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Goals for Lecture

Key concepts
• the motif finding problem
• using EM to address the motif-finding problem
• the OOPS and ZOOPS models



Sequence Motifs

• What is a sequence motif ?
– a sequence pattern of biological significance

• Examples
– DNA sequences corresponding to protein binding sites
– protein sequences corresponding to common functions 

or conserved pieces of structure



Sequence Motifs Example

Figure from Crooks et al., Genome Research 14:1188-90, 2004.

CAP-binding motif model 
based on 59 binding sites in 
E.coli

helix-turn-helix motif model 
based on 100 aligned protein 
sequences



The Motif Model Learning Task

given: a set of sequences that are thought to contain  
occurrences of an unknown motif of interest

do:
– infer a model of the motif
– predict the locations of the motif occurrences in 

the given sequences



Why is this important?

• To further our understanding of which 
regions of sequences are “functional”

• DNA: biochemical mechanisms by which 
the expression of genes are regulated

• Proteins: which regions of proteins 
interface with other molecules (e.g., DNA 
binding sites)

• Mutations in these regions may be 
significant



Motifs and Profile Matrices
(a.k.a. Position Weight Matrices)
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• Given a set of aligned sequences, it is straightforward to 
construct a profile matrix characterizing a motif of interest
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• Each element represents the probability of given 
character at a specified position



Sequence logos

or

frequency logo information content logo

A

C

G

T

1 2 3 4 5 6 7 8

0.1

0.1

0.6

0.2

0.1

0.5

0.2

0.2 0.3

0.2

0.2

0.3 0.2

0.1

0.5

0.2 0.1

0.1

0.6

0.2

0.3

0.2

0.1

0.4

0.1

0.1

0.7

0.1

0.3

0.2

0.2

0.3



Motifs and Profile Matrices
• How can we construct the profile if the sequences aren’t 

aligned?  
• In the typical case we don’t know what the motif looks 

like.



• ChIP-chip experiment tells which probes are bound 
(though this protocol has been replaced by ChIP-seq)

Unaligned Sequence Example

Figure from https://en.wikipedia.org/wiki/ChIP-on-chip



The Expectation-Maximization 
(EM) Approach

[Lawrence & Reilly, 1990; Bailey & Elkan, 1993, 1994, 1995]

• EM is a family of algorithms for learning probabilistic 
models in problems that involve hidden state

• In our problem, the hidden state is where the motif 
starts in each training sequence



Overview of EM
• Method for finding the maximum likelihood (ML) 

parameters (Θ) for a model (M) and data (D)

• Useful when 
– it is difficult to optimize               directly
– likelihood can be decomposed by the introduction of hidden 

information (Z)

– and it is easy to optimize the function (with respect to Θ):

),|(argmax MDPML θθ
θ

=

(see text section 11.6 for details)



Applying EM to the Motif Finding 
Problem

• First define the probabilistic model and likelihood 
function

• Identify the hidden variables (Z)
– In this application, they are the locations of the motifs

• Write out the Expectation (E) step
– Compute the expected values of the hidden variables given 

current parameter values
• Write out the Maximization (M) step

– Determine the parameters that maximize the Q function, 
given the expected values of the hidden variables



Representing Motifs in MEME
• MEME: Multiple EM for Motif Elicitation
• A motif is

– assumed to have a fixed width, W
– represented by a matrix of probabilities: pc, k

represents the probability of character c in column k

• Also represent the “background” (i.e. sequence outside 
the motif):  pc,0 represents the probability of character c
in the background



Representing Motifs in MEME

• Example:  a motif model of length 3

0     1    2    3
A  0.25   0.1  0.5  0.2
C  0.25   0.4  0.2  0.1
G  0.25   0.3  0.1  0.6
T  0.25   0.2  0.2  0.1

background motif positions



Representing Motif Starting 
Positions in MEME

• The element Zi,j of the matrix Z is an indicator random 
variable that takes value 1 if the motif starts in position j in 
sequence i (and takes value 0 otherwise)

• Example: given DNA sequences of length 6, where W=3

1    2    3    4
seq1  0    0    1    0
seq2    1    0    0    0
seq3   0    0    0    1
seq4    0    1    0    0

G T C A G G 
G A G A G T 
A C G G A G
C C A G T C



Probability of a Sequence Given a 
Motif Starting Position

is the i th sequence

is 1 if motif starts at position j in sequence i

is the character at position k in sequence i

before motif motif after motif



Sequence Probability Example

0     1    2    3
A  0.25   0.1  0.5  0.2
C  0.25   0.4  0.2  0.1
G  0.25   0.3  0.1  0.6
T  0.25   0.2  0.2  0.1

G C T G T A G



Likelihood function

• EM will (indirectly) optimize this function



Basic EM Approach

given: length parameter W, training set of sequences
t=0
set initial values for p(0)

do
++t
re-estimate Z(t) from p(t-1) (E-step)
re-estimate p(t) from Z(t) (M-step)

until change in p(t) < ε (or change in likelihood is < ε)
return: p(t), Z(t)



Warning: Notation Abuse!

• During the E-step, we compute the expected values 
of Z given p(t-1)

• We denote these expected values by
• For example:

1    2    3    4
seq1  0.1 0.1 0.2 0.6
seq2  0.4  0.2  0.1  0.3
seq3  0.3  0.1  0.5  0.1

G C T G T A
G C T G T A
G C T G T A
G C T G T A



The E-step: Computing Z(t)

• This comes from Bayes’ rule applied to

• To estimate the starting positions in Z at step t



The E-step: Computing Z(t)

• Assume that it is equally likely that the motif will start 
in any position



Example: Computing Z(t)

• Then normalize so that
...

0     1    2    3
A  0.25   0.1  0.5  0.2
C  0.25   0.4  0.2  0.1
G  0.25   0.3  0.1  0.6
T  0.25   0.2  0.2  0.1

G C T G T A G



The M-step: Estimating p

pseudo-counts

• Recall         represents the probability of character c in 
position k ; values for k=0 represent the background
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Example: Estimating p

A G G C A G

A C A G C A

T C A G T C



The ZOOPS Model
• The approach as we’ve outlined it, assumes that 

each sequence has exactly one motif occurrence per 
sequence; this is the OOPS model

• The ZOOPS model assumes zero or one
occurrences per sequence



E-step in the ZOOPS Model

• We need to consider another alternative: the ith
sequence doesn’t contain the motif

• We add another parameter (and its relative)

 prior probability of a 
sequence containing a motif

 prior probability that any 
position in a sequence is the 
start of a motif



E-step in the ZOOPS Model

• Qi is a random variable for which Qi = 1 if sequence 
Xi contains a motif, Qi = 0 otherwise 



M-step in the ZOOPS Model

• Update p same as before
• Update      as follows:



Extensions to the Basic EM 
Approach in MEME

• Varying the approach (TCM model) to assume zero 
or more motif occurrences per sequence

• Choosing the width of the motif

• Finding multiple motifs in a group of sequences

 Choosing good starting points for the parameters

 Using background knowledge to bias the parameters



Starting Points in MEME
• EM is susceptible to local maxima, so it’s a good idea 

to try multiple starting points
• Insight: motif must be similar to some subsequence 

in data set
• For every distinct subsequence of length W in the 

training set
– derive an initial p matrix from this subsequence
– run EM for 1 iteration

• Choose motif model (i.e. p matrix) with highest 
likelihood

• Run EM to convergence



Using Subsequences as Starting 
Points for EM

• Set values matching letters in the subsequence to 
some value π

• Set other values to (1- π)/(M-1) where M is the length 
of the alphabet

• Example: for the subsequence TAT with π =0.7

1    2    3
A  0.1  0.7  0.1
C  0.1  0.1  0.1
G  0.1  0.1  0.1
T  0.7  0.1  0.7



MEME web server

http://meme-suite.org/
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