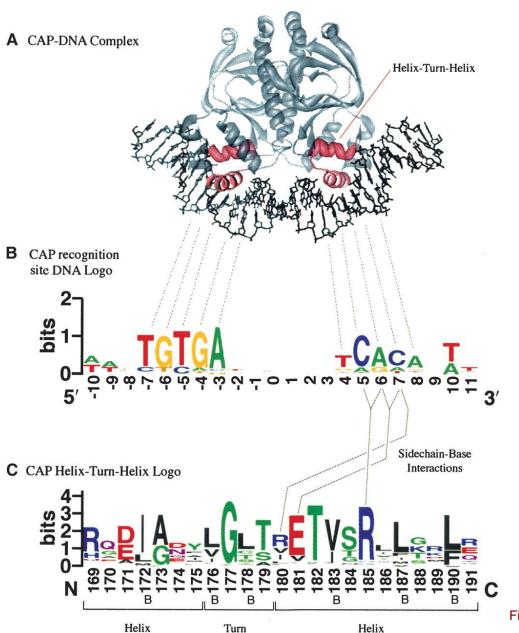
Learning Sequence Motif Models Using Expectation Maximization (EM)

BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostat.wisc.edu

Goals for Lecture


Key concepts

- the motif finding problem
- using EM to address the motif-finding problem
- the OOPS and ZOOPS models

Sequence Motifs

- What is a sequence *motif*?
 - a sequence pattern of biological significance
- Examples
 - DNA sequences corresponding to protein binding sites
 - protein sequences corresponding to common functions or conserved pieces of structure

Sequence Motifs Example

CAP-binding motif model based on 59 binding sites in E.coli

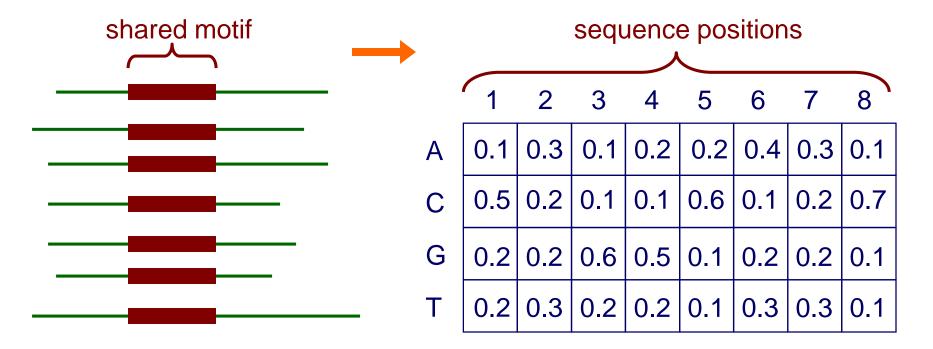
helix-turn-helix motif model based on 100 aligned protein sequences

Figure from Crooks et al., Genome Research 14:1188-90, 2004.

The Motif Model Learning Task

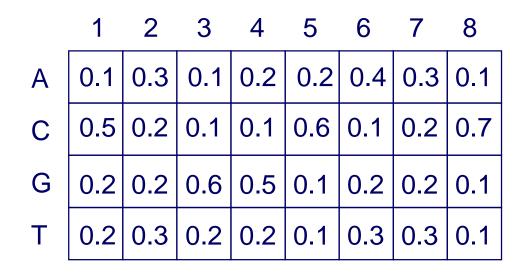
given: a set of sequences that are thought to contain occurrences of an unknown motif of interest

do:

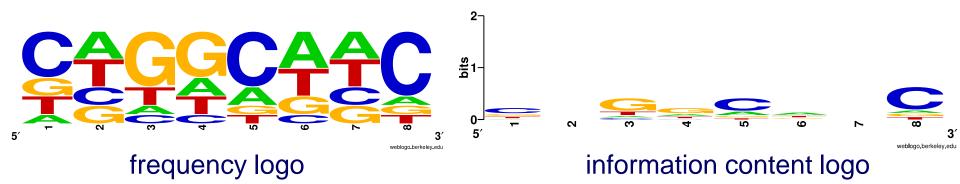

- infer a model of the motif
- predict the locations of the motif occurrences in the given sequences

Why is this important?

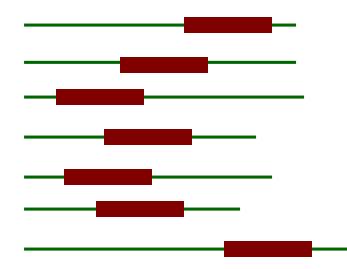
- To further our understanding of which regions of sequences are "functional"
- DNA: biochemical mechanisms by which the expression of genes are regulated
- Proteins: which regions of proteins interface with other molecules (e.g., DNA binding sites)
- Mutations in these regions may be significant


Motifs and *Profile Matrices* (a.k.a. *Position Weight Matrices*)

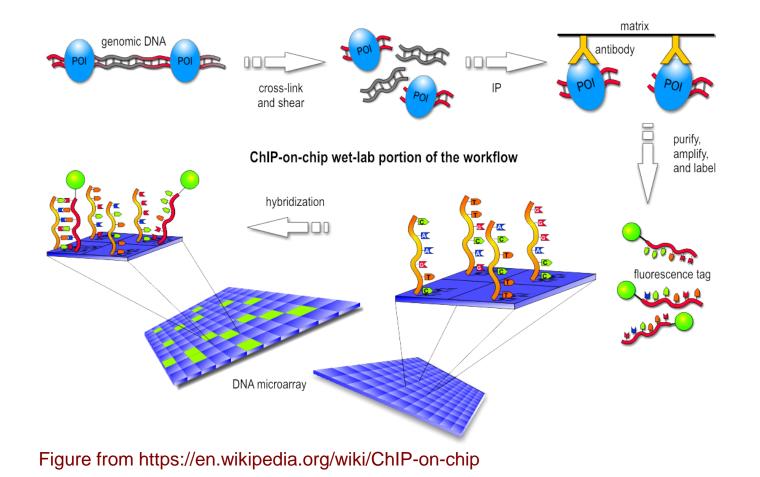
• Given a set of aligned sequences, it is straightforward to construct a profile matrix characterizing a motif of interest


• Each element represents the probability of given character at a specified position

Sequence logos

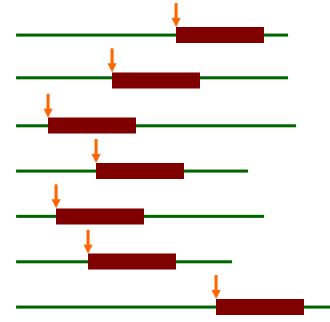


or


Motifs and Profile Matrices

- How can we construct the profile if the sequences aren't aligned?
- In the typical case we don't know what the motif looks like.

Unaligned Sequence Example


• ChIP-chip experiment tells which probes are bound (though this protocol has been replaced by ChIP-seq)

The Expectation-Maximization (EM) Approach

[Lawrence & Reilly, 1990; Bailey & Elkan, 1993, 1994, 1995]

- EM is a family of algorithms for learning probabilistic models in problems that involve *hidden state*
- In our problem, the hidden state is where the motif starts in each training sequence

Overview of EM

 Method for finding the maximum likelihood (ML) parameters (Θ) for a model (M) and data (D)

$$\theta_{ML} = \operatorname*{argmax}_{\theta} P(D \mid \theta, M)$$

- Useful when
 - it is difficult to optimize $P(D|\theta)$ directly
 - likelihood can be decomposed by the introduction of hidden information (Z)

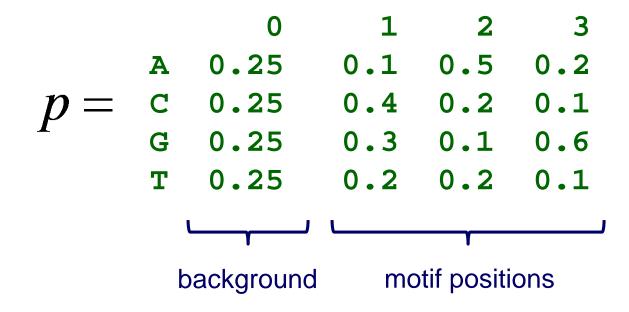
$$P(D \mid \theta) = \sum_{Z} P(D, Z \mid \theta)$$

- and it is easy to optimize the function (with respect to Θ):

$$Q(\theta | \theta^{t}) = \sum_{Z} P(Z | D, \theta^{t}) \log P(D, Z | \theta)$$

(see text section 11.6 for details)

Applying EM to the Motif Finding Problem


- First define the probabilistic model and likelihood function $P(D \mid \theta)$
- Identify the hidden variables (Z)
 - In this application, they are the locations of the motifs
- Write out the Expectation (E) step
 - Compute the expected values of the hidden variables given current parameter values
- Write out the Maximization (M) step
 - Determine the parameters that maximize the Q function, given the expected values of the hidden variables

Representing Motifs in MEME

- MEME: Multiple EM for Motif Elicitation
- A motif is
 - assumed to have a fixed width, W
 - represented by a matrix of probabilities: $p_{c, k}$ represents the probability of character c in column k
- Also represent the "background" (i.e. sequence outside the motif): $p_{c,0}$ represents the probability of character c in the background

Representing Motifs in MEME

• Example: a motif model of length 3

Representing Motif Starting Positions in MEME

- The element Z_{i,j} of the matrix Z is an indicator random variable that takes value 1 if the motif starts in position j in sequence i (and takes value 0 otherwise)
- Example: given DNA sequences of length 6, where W=3

AGG

AGAGT

GT

GA G G G Т 2 1 3 1 seql 0 0 0 1 seq2 0 0 0 0 1 seq3 0 0 seq4 0 0 0

Probability of a Sequence Given a Motif Starting Position

$$P(X_i \mid Z_{i,j} = 1, p) = \prod_{k=1}^{j-1} p_{c_k, 0} \prod_{k=j}^{j+W-1} p_{c_k, k-j+1} \prod_{k=j+W}^{L} p_{c_k, 0}$$

before motif motif difference in the second se

 X_i is the *i* th sequence $Z_{i,j}$ is 1 if motif starts at position *j* in sequence *i* C_k is the character at position *k* in sequence *i* Sequence Probability Example

$$X_i = \mathbf{G} \ \mathbf{C} \ \mathbf{T} \ \mathbf{G} \ \mathbf{T} \ \mathbf{A} \ \mathbf{G}$$

		0	1	2	3
p =	Α	0.25	0.1	0.5	0.2
	C	0.25	0.4	0.2	0.1
1	G	0.25		0.1	0.6
	т	0.25	0.2	0.2	0.1

 $P(X_i | Z_{i3} = 1, p) =$

 $p_{G,0} \times p_{C,0} \times p_{T,1} \times p_{G,2} \times p_{T,3} \times p_{A,0} \times p_{G,0} =$ 0.25 × 0.25 × 0.2 × 0.1 × 0.1 × 0.25 × 0.25

Likelihood function

$$P(D \mid p) = \prod_{i} P(X_{i} \mid p)$$

= $\prod_{i} \sum_{j} P(X_{i} \mid Z_{ij} = 1, p) P(Z_{ij} = 1)$
= $(L - W + 1)^{-n} \prod_{i} \sum_{j} P(X_{i} \mid Z_{ij} = 1, p)$

• EM will (indirectly) optimize this function

Basic EM Approach

given: length parameter W, training set of sequences t=0 set initial values for $p^{(0)}$ do **++**t re-estimate $Z^{(t)}$ from $p^{(t-1)}$ (E-step) re-estimate $p^{(t)}$ from $Z^{(t)}$ (M-step) until change in $p^{(t)} < \varepsilon$ (or change in likelihood is $< \varepsilon$) return: $p^{(t)}$, $Z^{(t)}$

Warning: Notation Abuse!

- During the E-step, we compute the expected values of Z given $p^{(t-1)}$
- We denote these expected values by $Z^{(t)} = E[Z \mid p^{(t-1)}]$
- For example:

$$\begin{cases} G C T G T A \\ 1 2 3 4 \\ \hline & 1 2 3 4 \\ \hline$$

The E-step: Computing Z^(t)

• To estimate the starting positions in *Z* at step *t*

$$Z_{i,j}^{(t)} = \frac{P(X_i | Z_{i,j} = 1, p^{(t-1)}) P(Z_{i,j} = 1)}{\sum_{k=1}^{L-W+1} P(X_i | Z_{i,k} = 1, p^{(t-1)}) P(Z_{i,k} = 1)}$$

• This comes from Bayes' rule applied to

$$P(Z_{i,j} = 1 | X_i, p^{(t-1)})$$

The E-step: Computing $Z^{(t)}$

• Assume that it is equally likely that the motif will start in any position

$$Z_{i,j}^{(t)} = \frac{P(X_i | Z_{i,j} = 1, p^{(t-1)}) P(Z_{i,j} = 1)}{\sum_{k=1}^{L-W+1} P(X_i | Z_{i,k} = 1, p^{(t-1)}) P(Z_{i,k} = 1)}$$

Example: Computing $Z^{(t)}$ $X_i = G C T G T A G$ A 0.25 0.1 0.5 0.2 $p^{(t-1)} \stackrel{C}{=} 0.25 0.4 0.2 0.1$ T 0.25 0.2 0.2 0.1

 $Z_{i,1}^{(t)} \propto P(X_i | Z_{i,1} = 1, p^{(t-1)}) = 0.3 \times 0.2 \times 0.1 \times 0.25 \times 0.25 \times 0.25 \times 0.25$ $Z_{i,2}^{(t)} \propto P(X_i | Z_{i,2} = 1, p^{(t-1)}) = 0.25 \times 0.4 \times 0.2 \times 0.6 \times 0.25 \times 0.25 \times 0.25$

• Then normalize so that

 $\sum_{i=1}^{L-W+1} Z_{i,j}^{(t)} = 1$

The M-step: Estimating p

Recall p_{c,k} represents the probability of character c in position k; values for k=0 represent the background

Example: Estimating *p*

ACAGCA $Z_{11}^{(t)} = 0.1, \ Z_{12}^{(t)} = 0.7, \ Z_{13}^{(t)} = 0.1, \ Z_{14}^{(t)} = 0.1$ AGGCAG $Z_{21}^{(t)} = 0.4, \ Z_{22}^{(t)} = 0.1, \ Z_{23}^{(t)} = 0.1, \ Z_{24}^{(t)} = 0.4$ TCAGTC $Z_{31}^{(t)} = 0.2, \ Z_{32}^{(t)} = 0.6, \ Z_{33}^{(t)} = 0.1, \ Z_{34}^{(t)} = 0.1$ $p_{A,1}^{(t)} = \frac{Z_{1,1}^{(t)} + Z_{1,3}^{(t)} + Z_{2,1}^{(t)} + Z_{3,3}^{(t)} + 1}{Z_{11}^{(t)} + Z_{12}^{(t)} \dots + Z_{3,3}^{(t)} + Z_{3,4}^{(t)} + 4}$ $p_{\mathrm{C},2}^{(t)} = \frac{Z_{1,1}^{(t)} + Z_{1,4}^{(t)} + Z_{2,3}^{(t)} + Z_{3,1}^{(t)} + 1}{Z_{1,1}^{(t)} + Z_{1,2}^{(t)} \dots + Z_{3,3}^{(t)} + Z_{3,4}^{(t)} + 4}$

The ZOOPS Model

- The approach as we've outlined it, assumes that each sequence has exactly <u>one motif occurrence per</u> <u>s</u>equence; this is the OOPS model
- The ZOOPS model assumes <u>zero or one</u> <u>occurrences per s</u>equence

E-step in the ZOOPS Model

- We need to consider another alternative: the *i*th sequence doesn't contain the motif
- We add another parameter (and its relative)
 - prior probability of a sequence containing a motif

$$\lambda = \frac{\gamma}{(L - W + 1)}$$

 prior probability that any position in a sequence is the start of a motif

E-step in the ZOOPS Model

$$Z_{i,j}^{(t)} = \frac{P(X_i | Z_{i,j} = 1, p^{(t-1)}) \lambda^{(t-1)}}{P(X_i | Q_i = 0, p^{(t-1)})(1 - \gamma^{(t-1)})} + \sum_{k=1}^{L-W+1} P(X_i | Z_{i,k} = 1, p^{(t-1)}) \lambda^{(t-1)}}$$

• Q_i is a random variable for which $Q_i = 1$ if sequence X_i contains a motif, $Q_i = 0$ otherwise

$$Q_{i} = \sum_{j=1}^{L-W+1} Z_{i,j}$$

$$P(X_{i} | Q_{i} = 0, p^{(t-1)}) = \prod_{j=1}^{L} p_{c_{j},0}^{(t-1)}$$

M-step in the ZOOPS Model

- Update *p* same as before
- Update γ as follows:

$$\gamma^{(t)} \equiv (L - W + 1)\lambda^{(t)} = \frac{1}{n} \sum_{i=1}^{n} Q_i^{(t)}$$

Extensions to the Basic EM Approach in MEME

- Varying the approach (TCM model) to assume zero or <u>more</u> motif occurrences per sequence
- Choosing the width of the motif
- Finding multiple motifs in a group of sequences
- ✓ Choosing good starting points for the parameters
- ✓ Using background knowledge to bias the parameters

Starting Points in MEME

- EM is susceptible to local maxima, so it's a good idea to try multiple starting points
- Insight: motif must be similar to some subsequence in data set
- For every distinct subsequence of length *W* in the training set
 - derive an initial *p* matrix from this subsequence
 - run EM for 1 iteration
- Choose motif model (i.e. *p* matrix) with highest likelihood
- Run EM to convergence

Using Subsequences as Starting Points for EM

- Set values matching letters in the subsequence to some value π
- Set other values to $(1 \pi)/(M-1)$ where *M* is the length of the alphabet
- Example: for the subsequence TAT with $\pi = 0.7$

$$p = \begin{bmatrix} 1 & 2 & 3 \\ A & 0.1 & 0.7 & 0.1 \\ C & 0.1 & 0.1 & 0.1 \\ G & 0.1 & 0.1 & 0.1 \\ T & 0.7 & 0.1 & 0.7 \end{bmatrix}$$

MEME web server

	MEME (recu sequ Multiple Em for Matif Elisitation	IE discovers novel, ungapped motifs urring, fixed-length patterns) in your iences (sample output from sequences). IE splits variable-length patterns into two				
MEME Suite 4.11.0	Of hi	ore separate motifs. See this Manual for information.				
► Motif Discovery						
► Motif Enrichment	Data Submission Form					
Motif Scanning	Perform motif discovery on DNA, RNA or protein datasets.					
Motif Comparison	Select the motif discovery mode					
► Manual	Normal mode O Discriminative mode ?					
► Guides & Tutorials	Select the sequence alphabet					
► Sample Outputs	Use sequences with a standard alphabet or specify a custom alphabet. ?					
► File Format Reference	In DNA, RNA or Protein Custom Choose File No file chosen					
	Input the primary sequences					
► Databases	Enter sequences in which you want to find motifs. ?					
► Download & Install	Upload sequences Choose File No file chosen					
► Help	Select the site distribution					
► Alternate Servers	How do you expect motif sites to be distributed in sequences?					
▼Authors & Citing	Zero or one occurrence per sequence					
Authors						
Citing the MEME Suite	Select the number of motifs					
► Recent Jobs	How many motifs should MEME find? ?					
↔ Previous version 4.10.2	3					
71101003 TC131011 4.10.2	Input job details					
	(Optional) Enter your email address. ?					
	(Optional) Enter a job description. ?					
		//				
	► Advanced options					
	Note: if the combined form inputs exceed 80MB the job will be rejected.					
	Start Search Clear Input					
	Version 4.11.0 Please send comments and questions to: meme-suite@uw	v.edu Powered by Opal				

Home Documentation Downloads Authors Citing

http://meme-suite.org/