
Measuring transcriptomes with RNA-Seq

BMI/CS 776 

www.biostat.wisc.edu/bmi776/

Spring 2016

Anthony Gitter

gitter@biostat.wisc.edu



Overview

• RNA-Seq technology

• The RNA-Seq quantification problem

• Generative probabilistic models and Expectation-Maximization 

for the quantification task



Goals for lecture

• What is RNA-Seq?

• How is RNA-Seq used to measure the abundances of RNAs 

within cells?

• What probabilistic models and algorithms are used for 

analyzing RNA-Seq?



Measuring transcription the old way: microarrays

• Each spot has “probes” for a certain 

gene

• Probe: a DNA sequence 

complementary to a certain gene

• Relies on complementary 

hybridization

• Intensity/color of light from each spot 

is measurement of the number of 

transcripts for a certain gene in a 

sample

• Requires knowledge of gene 

sequences



Advantages of RNA-Seq over microarrays

• No reference sequence needed

• With microarrays, limited to the probes on the chip

• Low background noise

• Large dynamic range

• 105 compared to 102 for microarrays

• High technical reproducibility

• Identify novel transcripts and splicing events



RNA-Seq technology

• Leverages rapidly advancing sequencing technology (e.g., Illumina)

• Transcriptome analog to whole genome shotgun sequencing

• Two key differences from genome sequencing:

1. Transcripts sequenced at different levels of coverage - expression levels

2. Sequences already known (in many cases) - coverage is measurement



A generic RNA-Seq protocol

Sample 

RNA

sequencing 

machine

reads

CCTTCNCACTTCGTTTCCCAC

TTTTTNCAGAGTTTTTTCTTG

GAACANTCCAACGCTTGGTGA

GGAAANAAGACCCTGTTGAGC

CCCGGNGATCCGCTGGGACAA

GCAGCATATTGATAGATAACT

CTAGCTACGCGTACGCGATCG

CATCTAGCATCGCGTTGCGTT

CCCGCGCGCTTAGGCTACTCG

TCACACATCTCTAGCTAGCAT

CATGCTAGCTATGCCTATCTA

cDNA 

fragments

reverse 

transcription + 

amplification

RNA 

fragments

fragmentation



RNA-Seq data

@HWUSI-EAS1789_0001:3:2:1708:1305#0/1

CCTTCNCACTTCGTTTCCCACTTAGCGATAATTTG

+HWUSI-EAS1789_0001:3:2:1708:1305#0/1

VVULVBVYVYZZXZZ\ee[a^b`[a\a[\\a^^^\

@HWUSI-EAS1789_0001:3:2:2062:1304#0/1

TTTTTNCAGAGTTTTTTCTTGAACTGGAAATTTTT

+HWUSI-EAS1789_0001:3:2:2062:1304#0/1

a__[\Bbbb`edeeefd`cc`b]bffff`ffffff

@HWUSI-EAS1789_0001:3:2:3194:1303#0/1

GAACANTCCAACGCTTGGTGAATTCTGCTTCACAA

+HWUSI-EAS1789_0001:3:2:3194:1303#0/1

ZZ[[VBZZY][TWQQZ\ZS\[ZZXV__\OX`a[ZZ

@HWUSI-EAS1789_0001:3:2:3716:1304#0/1

GGAAANAAGACCCTGTTGAGCTTGACTCTAGTCTG

+HWUSI-EAS1789_0001:3:2:3716:1304#0/1

aaXWYBZVTXZX_]Xdccdfbb_\`a\aY_^]LZ^

@HWUSI-EAS1789_0001:3:2:5000:1304#0/1

CCCGGNGATCCGCTGGGACAAGCAGCATATTGATA

+HWUSI-EAS1789_0001:3:2:5000:1304#0/1

aaaaaBeeeeffffehhhhhhggdhhhhahhhadh

name
sequence
qualities

read

1 Illumina HiSeq

2500 lane

~150 million reads

read1

read2

paired-end reads



RNA-Seq is a relative abundance measurement 

technology

• RNA-Seq gives you reads from 

the ends of a random sample 

of fragments in your library

• Without additional data this 

only gives information about 

relative abundances

• Additional information, such as 

levels of “spike-in” transcripts, 

are needed for absolute 

measurements

RNA

sample

cDNA

fragments

reads



Issues with relative abundance measures

Gene

Sample 1 

absolute 

abundance

Sample 1 

relative 

abundance

Sample 2 

absolute 

abundance

Sample 2 

relative 

abundance

1 20 10% 20 5%

2 20 10% 20 5%

3 20 10% 20 5%

4 20 10% 20 5%

5 20 10% 20 5%

6 100 50% 300 75%

• Changes in absolute expression of high expressors is a major factor

• Normalization is required for comparing samples in these situations



Tasks with RNA-Seq data

• Assembly: 

• Given: RNA-Seq reads (and possibly a genome sequence)

• Do: Reconstruct full-length transcript sequences from the reads

• Quantification: 

• Given: RNA-Seq reads and transcript sequences

• Do: Estimate the relative abundances of transcripts (“gene expression”)

• Differential expression:

• Given: RNA-Seq reads from two different samples and transcript sequences

• Do: Predict which transcripts have different abundances between two samples



Public sources of RNA-Seq data

• Gene Expression Omnibus (GEO): http://www.ncbi.nlm.nih.gov/geo/

• Both microarray and sequencing data

• Sequence Read Archive (SRA): http://www.ncbi.nlm.nih.gov/sra

• All sequencing data (not necessarily RNA-Seq)

• ArrayExpress: https://www.ebi.ac.uk/arrayexpress/

• European version of GEO

• All of these have links between them

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/


The basics of quantification with RNA-Seq data

• For simplicity, suppose reads are of length one (typically they are > 35 bases)

• What relative abundances would you estimate for these genes?
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Length dependence

• Probability of a read coming from a transcript ∝ relative abundance × length

transcripts reads

100 A

60 C

40 G
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The basics of quantification from RNA-Seq data

• Basic assumption: 

• Normalization factor is the mean length of expressed transcripts

expression level length



The basics of quantification from RNA-Seq data

• Estimate the probability of reads being generated from a given 

transcript by counting the number of reads that align to that transcript

• Convert to expression levels by normalizing by transcript length

# reads mapping to transcript i

total # of mappable reads



The basics of quantification from RNA-Seq data

• Basic quantification algorithm

• Align reads against a set of reference transcript sequences

• Count the number of reads aligning to each transcript

• Convert read counts into relative expression levels



Counts to expression levels

• RPKM - Reads Per Kilobase per Million mapped reads

• TPM - Transcripts Per Million

• Prefer TPM to RPKM because of normalization factor

• TPM is a technology-independent measure (simply a fraction)

(estimate of)



What if reads do not uniquely map to transcripts?

• The approach described assumes that every read can be uniquely aligned to a 

single transcript

• This is generally not the case

• Some genes have similar sequences - gene families, repetitive sequences

• Alternative splice forms of a gene share a significant fraction of sequence



Alternative splicing



Multi-mapping reads in RNA-Seq

Species Read length % multi-mapping reads

Mouse 25 17%

Mouse 75 10%

Maize 25 52%

Axolotl 76 23%

• Throwing away multi-mapping reads leads to

1. Loss of information

2. Potentially biased estimates of abundance



Distributions of alignment counts



What if reads do not uniquely map to transcripts?

• “Multiread”: a read that could have been derived from multiple 

transcripts

• How would you estimate the relative abundances for these 

transcripts?

transcripts
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Some options for handling multireads

• Discard all multireads, estimate based on uniquely mapping reads only

• Discard multireads, but use “unique length” of each transcript in calculations

• “Rescue” multireads by allocating (fractions of) them to the transcripts

• Three step algorithm

1. Estimate abundances based on uniquely mapping reads only

2. For each multiread, divide it between the transcripts to which it maps,  

proportionally to their abundances estimated in the first step

3.Recompute abundances based on updated counts for each transcript



Rescue method example - Step 1
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Rescue method example - Step 2
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Rescue method example - Step 3

transcripts reads
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An observation about the rescue method

• Note that at the end of the rescue algorithm, we have an updated set of 

abundance estimates

• These new estimates could be used to reallocate the multireads

• And then we could update our abundance estimates once again

• And repeat!

• This is the intuition behind the statistical approach to this problem



RSEM (RNA-Seq by Expectation-Maximization) -

a generative probabilistic model

• Simplified view of the model

• Grey – observed variable

• White – latent (unobserved) variables

transcript probabilities 

(expression levels)

number of reads
start position

transcript

orientation

read sequence



RSEM - a generative probabilistic model

fragment length

read length

quality scores

paired read

transcript probabilities (expression levels)

number of reads

transcript

start position

orientation

read sequence



• Observed data likelihood

• Likelihood function is concave w.r.t. θ

• Has a global maximum (or global maxima)

• Expectation-Maximization for optimization

Quantification as maximum likelihood inference

“RNA-Seq gene expression estimation with read mapping uncertainty”
Li, B., Ruotti, V., Stewart, R., Thomson, J., Dewey, C.

Bioinformatics, 2010



• Full likelihood computation requires O(NML2) time

• N (number of reads) ~ 107

• M (number of transcripts) ~ 104

• L (average transcript length) ~ 103

• Approximate by alignment

Approximate inference with read alignments

all local alignments of read n with at most x mismatches



EM Algorithm

• Expectation-Maximization for RNA-Seq

• E-step: Compute expected read counts given current expression levels

• M-step: Compute expression values maximizing likelihood given expected 

read counts

• Rescue algorithm ≈ 1 iteration of EM



HMM Interpretation

start

transcript 1

transcript 2

transcript 3

transcript M

...

hidden: read start positions

observed: read sequences

Learning parameters: Baum-Welch Algorithm (EM for HMMs)

Approximation: Only consider a subset of paths for each read 

...



Improved accuracy over unique and rescue

true expression level
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Improving accuracy on repetitive genomes: maize
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Probabilistically-weighted alignments



Expected read count visualization



Finding the optimal read length
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Summary

• RNA-Seq is the preferred technology for transcriptome analysis in most 

settings

• The major challenge in analyzing RNA-Seq data: the reads are much 

shorter than the transcripts from which they are derived

• Tasks with RNA-Seq data thus require handling hidden information: 

which gene/isoform gave rise to a given read

• The Expectation-Maximization algorithm is extremely powerful in these 

situations


