
To appear in: Proceedings of the Third International Conference on
Intelligent Systems for Molecular Biology

July, 1995
AAAI Press

The value of prior knowledge in discovering motifs with MEME

Timothy L. Bailey� and Charles Elkan
Department of Computer Science and Engineering

University of California at San Diego
La Jolla, California 92093-0114

tbailey@cs.ucsd.edu and elkan@cs.ucsd.edu

Abstract

MEME is a tool for discovering motifs in sets of protein or
DNA sequences. This paper describes several extensions to
MEME which increase its ability to find motifs in a totally
unsupervisedfashion, but which also allow it to benefit when
prior knowledge is available. When no background knowl-
edge is asserted, MEME obtains increased robustness from a
method for determining motif widths automatically, and from
probabilistic models that allow motifs to be absent in some
input sequences. On the other hand, MEME can exploit prior
knowledgeabout a motif being present in all input sequences,
about the length of a motif and whether it is a palindrome,
and (using Dirichlet mixtures) about expected patterns in in-
dividual motif positions. Extensive experiments are reported
which support the claim that MEME benefits from, but does
not require, background knowledge. The experiments use
seven previously studied DNA and protein sequence fami-
lies and 75 of the protein families documented in the Prosite
database of sites and patterns, Release 11.1.

Introduction
MEME is an unsupervised learning algorithm for discov-
ering motifs in sets of protein or DNA sequences. This
paper describes the third version of MEME. Earlier ver-
sions were described previously (Bailey & Elkan 1994),
(Bailey & Elkan 1995a). The MEME extensions on which
this paper focuses are methods of incorporating background
knowledge, or coping with its lack. For incorporating back-
ground knowledge, these innovations include automatic de-
tection of inverse-complement palindromes in DNA se-
quence datasets, and using Dirichlet mixture priors with
protein sequence datasets. Dirichlet mixture priors bring
information about which amino acids share common prop-
erties and thus are likely to be interchangeable in a given
position in a protein motif. This paper also describes a
new type of sequence model and a new heuristic for auto-
matically determining the width of a motif which remove
the need for the user to provide two types of information.
The new sequence model type allows each each sequence
in the training set to have exactly zero or one occurrences of
each motif. This type of model is ideally suited to discov-
ering multiple motifs in the majority of cases encountered�Supported by NIH Genome Analysis Pre-Doctoral Training
Grant No. HG00005.

in practice. The motif-width heuristic allows MEME to au-
tomatically discover several motifs of differing, unknown
widths in a single DNA or protein dataset. We also describe
an improved method of finding multiple, different motifs in
a single dataset.

Overview of MEME
The principal input to MEME is a set of DNA or protein
sequences. Its principal output is a series of probabilisticse-
quence models, each corresponding to one motif, whose pa-
rameters have been estimated by expectation maximization
(Dempster, Laird, & Rubin 1977). In a nutshell, MEME’s
algorithm is a combination of� expectation maximization (EM),� an EM-based heuristic for choosing the starting point for

EM,� a maximum likelihood ratio-based (LRT-based) heuristic
for determining the best number of model free parameters,� multistart for searching over possible motif widths, and� greedy search for finding multiple motifs.

OOPS, ZOOPS, and TCM models
The different types of sequence model supported by MEME
make differing assumptions about how and where mo-
tif occurrences appear in the dataset. We call the sim-
plest model type OOPS since it assumes that there is ex-
actly one occurrence per sequence of the motif in the
dataset. This type of model was introduced by Lawrence
& Reilly (1990). This paper describes for the first time a
generalization of OOPS, called ZOOPS, which assumes zero
or one motif occurrences per dataset sequence. Finally,
TCM (two-component mixture) models assume that there
are zero or more non-overlapping occurrences of the motif
in each sequence in the dataset, as described by Bailey &
Elkan (1994).

Each of these types of sequence model consists of two
components which model, respectively, the motif and non-
motif (“background”) positions in sequences. A motif is
modeled by a sequence of discrete random variables whose
parameters give the probabilities of each of the different
letters (4 in the case of DNA, 20 in the case of proteins)



occurring in each of the different positions in an occurrence
of the motif. The background positions in the sequences
are modeled by a single discrete random variable. If the
width of the motif is W , and the alphabet for sequences isL = fa; : : : ; zg, we can describe the parameters of the two
components of each of the three model types in the same
way as� = [ �0 �1 ] = [ p0 p1 p2 : : : pW ]= 2664 Pa;0 Pa;1 Pa;2 : : : Pa;WPb;0 Pb;1 Pb;2 : : : Pb;W

...
...

...
...Pz;0 Pz;1 Pz;2 : : : Pz;W 3775 :

Here, Px;j is the probability of letter x occurring at either
a background position (j = 0) or at position j of a mo-
tif occurrence (1 � j � W ), �0 is the parameters of the
background component of the sequence model, and �1 is
the parameters of the motif component.

Formally, the parameters of an OOPS model are the letter
frequencies � for the background and each column of the
motif, and the width W of the motif. The ZOOPS model
type adds a new parameter, 
, which is the prior probability
of a sequence containing a motif occurrence. A TCM model,
which allows any number of (non-overlapping)motif occur-
rences to exist within a sequence, replaces 
 with �, where� is the prior probability that any position in a sequence is
the start of a motif occurrence.

DNA palindromes
A DNA palindrome is a sequence whose inverse comple-
ment is the same as the original sequence. DNA binding
sites for proteins are often palindromes. MEME models a
DNA palindrome by constraining the parameters of corre-
sponding columns of a motif to be the same:�1 = 264 Pa;1 Pa;2 : : : Pt;2 Pt;1Pc;1 Pc;2 : : : Pg;2 Pg;1Pg;1 Pg;2 : : : Pc;2 Pc;1Pt;1 Pt;2 : : : Pa;2 Pa;1 375 :
That is, Pa;i = Pt;W+1�i;Pc;i = Pg;W+1�i;Pg;i = Pt;W+1�i;Pt;i = Pt;W+1�i
for i = 1; : : : ; bW=2c. The last column is an inverted
version of the first column, the second to last column is an
inverted version of the second column, and so on. As will
be described below, MEME automatically chooses whether
or not to enforce the palindrome constraint, doing so only if
it improves the value of the LRT-based objective function.

Expectation maximization
Consider searching for a single motif in a set of sequences
by fitting one of the three sequence model types to it. The
dataset of n sequences, each of lengthL, will be referred to

as X = fX1; X2; : : : ; Xng.1 There are m = L �W + 1
possible starting positions for a motif occurrence in each
sequence. The starting point(s) of the occurrence(s) of the
motif, if any, in each of the sequences are unknown and
are represented by the the variables (called the “missing
information”) Z = fZi;jj1 � i � n; 1 � j � mg whereZi;j = 1 if a motif occurrence starts in position j in sequenceXi, and Zi;j = 0 otherwise. The user selects one of the
three types of model and MEME attempts to maximize the
likelihood function of a model of that type given the data,Pr(Xj�), where � is a vector containing all the parameters
of the model. MEME does this by using EM to maximize
the expectation of the joint likelihood of the model given
the data and the missing information, Pr(X;Zj�). This
is done iteratively by repeating the following two steps, in
order, until a convergence criterion is met.� E-step: compute Z(t) = E(ZjX;�(t))[Z]� M-step: solve�(t+1) = argmax� E(ZjX;�(t))[logPr(X;Zj�)]
where � is a vector containing all the parameters of the
model. This process is known to converge (Dempster, Laird,
& Rubin 1977) to a local maximum of the likelihood func-
tion Pr(Xj�).

Joint likelihood functions. MEME assumes each se-
quence in the training set is an independent sample from a
member of either the OOPS, ZOOPS or TCM model families
and uses EM to maximize one of the following likelihood
functions. The logarithm of the joint likelihood for models
of each of the three model types is as follows. For an OOPS
model, the joint log likelihood is

logPr(X;Zj�)= nXi=1

mXj=1

Zi;j logPr(XijZi;j = 1; �) + n log
1m:

For a ZOOPS model, the joint log likelihood is

logPr(X;Zj�; 
)= nXi=1

mXj=1

Zi;j logPr(XijZi;j = 1; �)+ nXi=1

(1 � Qi) logPr(XijQi = 0; �)+ nXi=1

(1 � Qi) log(1 � 
) + nXi=1

Qi log�:
1It is not necessary that all of the sequences be of the same

length, but this assumption will be made in what follows in order
to simplify the exposition of the algorithm. In particular, under
this assumption, � = 
=m.



For a TCM model, the joint log likelihood is

logPr(X;Zj�; �)= nXi=1

mXj=1

(1 � Zi;j) logPr(Xi;jj�0)+Zi;j logPr(Xi;jj�1)+(1 � Zi;j) log(1 � �) + (Zi;j) log�:
The variable Qi used in the ZOOPS likelihood equation is
defined as Qi =Pmj=1 Zi;j. Thus, Qi = 1 if sequence Xi
contains a motif occurrence, and Qi = 0 otherwise. The
conditional sequence probabilities for sequences containing
a motif used by OOPS and ZOOPS models are defined as

logPr(XijZi;j = 1; �)= W�1Xk=0

I(i; j + k)T logpk + Xk2∆i;j I(i; k)T logp0;
where I(i; j) is a vector-valued indicator variable of lengthA = jLj, whose entries are all zero except the one corre-
sponding to the letter in sequence Xi at position j, Xi;j.
∆i;j = f1; 2; : : :; j � 1; j + w; : : : ; Lg is the set of posi-
tions in sequenceXi which lie outside the occurrence of the
motif when the motif starts at position j. The conditional
probability of a sequence without a motif occurrence under
a ZOOPS model is defined asPr(XijQi = 0; �) = LYk=1

PXi;k;0:
The conditional probability of a length-W subsequence gen-
erated according to the background or motif component of
a TCM model is defined to be

logPr(Xi;jj�c) = W�1Xk=0

I(i; j + k)T logpk0;
where k0 = 0 if c = 0 (background), and k0 = k + 1 ifc = 1 (motif).

The E-step. The E-step of EM calculates the expected
value of the missing information—the probability that a
motif occurrence starts in position j of sequence Xi. The
formulas used by MEME for the three types of model are
given below. Derivations are given elsewhere (Bailey &
Elkan 1995b). For an OOPS model,Z(t)i;j = Pr(XijZi;j = 1; �(t))Pmj=1 Pr(XijZi;j = 1; �(t)) :
For a ZOOPS model,Z(t)i;j = fif0 +Pmk=1 fk ; wheref0 = Pr(XijQi = 0; �(t))(1 � 
(t)); andfj = Pr(XijZi;j = 1; �(t))�(t); 1 � j � m:

For a TCM model,Z(t)i;j = Pr(Xi;jj�(t)1 )�(t)Pr(Xi;jj�(t)0 )(1 � �(t)) + Pr(Xi;jj�(t)1 )�(t) :
The M-step. The M-step of EM in MEME reestimates �

using the following formula for models of all three types:p(t+1)k = ck + dkjck + dkj ; 0 � k � W; whereck = ( t�PWj=1 cj if k = 0;Pni=1

Pmj=1 Z(t)i;j I(i; j + k � 1) otherwise.

Here dk is a vector of pseudo-counts which is used to incor-
porate background information into EM as will be described
later, t is the length-A vector of total counts of each letter
the dataset, and jxj is the sum of the components of vectorx. For ZOOPS and TCM models, parameters 
 and � are
reestimated during the M-step by the formula�(t+1) = 
(t+1)m = 1nm nXi=1

mXj=1

Z(t)i;j :
Finding multiple motifs
All three sequence model types supported by MEME model
sequences containing a single motif (albeit a TCM model
can describe sequences with multiple occurrences of the
same motif). To find multiple, non-overlapping, different
motifs in a single dataset, MEME uses greedy search. It
incorporates information about the motifs already discov-
ered into the current model to avoid rediscovering the same
motif. The process of discovering one motif is called a pass
of MEME.

The three sequence model types used by MEME assume,
a priori, that motif occurrences are equally likely at each
position j in sequence Xi. This translates into a uniform
prior probability distribution on the missing data variablesZi;j . That is, initially, MEME assumes that Pr(Zi;j =
1) = � for all Zi;j .2 On the second and subsequent passes,
MEME changes this assumption to approximate a multiple-
motif sequence model. A new prior on each Zi;j is used
during the E-step that takes into account the probability that
a new width-W motif occurrence starting at position Xi;j
might overlap occurrences of the motifs found on previous
passes of MEME.

To help compute the new prior on Zi;j we introduce vari-
ables Vi;j where Vi;j = 1 if a width-W motif occurrence
could start at position j in sequence Xi without overlap-
ping an occurrence of a motif found on a previous pass.
Otherwise Vi;j = 0.Vi;j = �

1; if no old motifs in [Xj; : : : ; Xj+w�1]
0; otherwise

for i = 1; : : : ; n and j = 1; : : : ; L.

2For an OOPS model, � = 1=m. For a ZOOPS model,� = 
=m.



To compute Vi;j we use another set of binary variablesUi;j which encode which positions in the dataset are not
contained in occurrences of previously found motifs. So,Ui;j is defined asUi;j = �

1; if Xi;j 62 previous motif occurrence
0; otherwise

for i = 1; : : : ; n and j = 1; : : : ;m.
As with the missing information variables Zi;j , MEME

computes and stores the expected values of the variablesUi;j . Before the first pass of MEME, the probability thatXi;j is not already contained in a motif, the expected value

of Ui;j , is set to one: U (0)i;j = 1 for i = 1; : : : ; n andj = 1; : : : ; L. These values are updated after each pass
according to the formulaU (p)i;j = U (p�1)i;j (1 � maxk=j�W+1;:::;j Z(t)i;k) (1)

where Z(t)i;j is the final estimate of the missing information
at the end of the current pass, p. Intuitively, we change
the estimate of Xi;j not being part of some motif by multi-
plying it by the probability of it not being contained in an
occurrence of the current motif. This we estimate using the
most probable motif occurrence of the current width that
would overlap it. We use the maximum of Z(t)i;j because
occurrences of the current motif cannot overlap themselves,
hence the values of Z(t)i;j are not independent, so the up-
per bound on the probability used here is appropriate. The
value of U (p)i;j is then used as the value for Pr(Ui;j = 1) in
equation (2) below during the next pass, p + 1.

MEME estimates the probability of a width-W motif oc-
currence not overlapping an occurrence of any previous
motif as the minimum of the probability of each position
within the new motif occurrence not being part of an oc-
currence found on a previous pass. In other words, MEME
estimates Pr(Vi;j = 1) asPr(Vi;j = 1) = mink=j;:::;j+W�1

Pr(Ui;k = 1): (2)

The minimum is used because motif occurrences found on
previous passes may not overlap (by assumption) so the
values of Ui;j are not independent. An approximate for-
mula for reestimating Zi;j in the E-step of EM which takes
motifs found on previous passes into account and thus ap-
proximates a multiple-motif model can be shown to beẐ(t)i;j = E(ZjX;�(t))[Zi;j] Pr(Vi;j = 1):
MEME uses Ẑ(t)i;j in place of Z(t)i;j in the M-step of EM and
in equation (1) above.

Using prior knowledge about motif columns
Applied to models of the forms described above, the EM
method suffers from two problems. First, if any letter fre-
quency parameter is ever estimated to be zero during EM,
it remains zero. Second, if the dataset size is small, the

maximum likelihood estimates of the letter frequency pa-
rameters tend to have high variance. Both these problems
can be avoided by incorporating prior information about the
possible values which the letter frequency parameters can
take.

Using a mixture of Dirichlet densities as a prior in the
estimation of the parameters of a model of biopolymer se-
quences has been proposed by Brown et al. (1993). This
approach makes sense especially for proteinswhere many of
the 20 letters in the sequence alphabet have similar chemical
properties. Motif columns which give high probability to
two (or more) letters representing similar amino acids are a
priori more likely. A Dirichlet mixture density has the form� = q1�1 + : : :+ qR�R where �i is a Dirichlet probabil-
ity density function with parameter �(i) = (�(i)a ; : : : ; �(i)z ).
A simple Dirichlet prior is the special case of a Dirichlet
mixture prior where R = 1.

MEME uses Dirichlet mixture priors as follows. In the M-
step, the mean posterior estimates of the parameter vectorspi, i = 1 to W , are computed instead of their maximum
likelihood estimates. Let ck = [ca; : : : ; cz]T be the vector
of expected counts of letters a; : : : ; z in column k of the mo-
tif. We will consider this to be the “observed” letter counts
in column k of the motif. The probability of component j in
the Dirichlet mixture having generated the observed counts
for column k is calculated using Bayes rule,Pr(�(j)jck) = qjPr(ckj�(j))PRi=1 qiPr(ckj�(i)) :
If we define c = jckj = Px2L cx and b(j) = j�(j)j =Px2L �(j)x , thenPr(ckj�(j)) = Γ(c + 1)Γ(b(j))

Γ(c + b(j)) Yx2L Γ(cx + b(j))
Γ(b(j))

where Γ(�) is the gamma function. We estimate the vector
of pseudo-counts dk = [dka; dkb ; : : : ; dkz]T asdkx = RXj=1

Pr(�(j)jck)�(j)x ; x 2 L:
The mean posterior estimate of the letter probabilities pk is
then p(t+1)k = ck + dkjck + dkj
for k = 1 to W . This gives the Bayes estimate of the
letter probabilities for column k of the motif and is used to
reestimate � in the M-step.

Brown et al. (1993) have published several Dirichlet mix-
ture densities that model well the underlying probability
distribution of the letter frequencies observed in multiple
alignments of protein sequences. The experiments reported
in this paper use either their 30-component Dirichlet mixture
prior or a 1-component prior where �(1) is just the average
letter frequencies in the dataset.



Determining the number of model free parameters
The number of free parameters in a model of any of the
MEME sequence model types depends on the width of the
motif and on whether or not the DNA palindrome con-
straints are in force. When the width of the motifs is not
specified by the user and/or when MEME is asked to check
for DNA palindromes, MEME chooses the number of free
parameters to use by optimizing a heuristic function based
on the maximum likelihood ratio test (LRT).

The LRT is based upon the following fact (Kendall, Stu-
art, & Ord 1983). Suppose we successively apply con-
straints C1; : : : ; Cs to a model with parameters � and let�(s) be the maximum likelihood estimator of � when all
constraints C1; : : : ; Cs have been applied. Then, under cer-
tain conditions, the asymptotic distribution of the statistic�2 = 2 log

Pr(Xj�)Pr(Xj�(s))
is central �2 with degrees of freedom equal to the num-
ber of independent constraints upon parameters imposed byC1; : : : ; Cs.

MEME uses the LRT in an unusual way to compute a
measure of statistical significance for a single model by
comparing it to a “universal” null model. The null model
is designed to be the simplest possible model of a given
type. Let � be the parameters of a model discovered by
MEME using EM. Then, � is the maximum likelihood es-
timate (MLE) for the parameters of the model.3 Likewise,
let �0 be the maximum likelihood estimate for the parame-
ters of the null model. Since both � and �0 are maximum
likelihood estimates, the LRT can be applied to these two
models. At some significance level between 0 and 1, the
LRT would reject the null model in favor of the more com-
plicated model. We define LRT (�) to be this significance
level, so LRT (�) = Q(�2j�); whereQ(�2j�) � Q(x2); x2 = (�2=�)1=3 � (1 � 2

9� )p
2=(9�)

(Abramowitz & Stegun 1972). Q(x2) is the Q function
for the standard normal distribution (i.e., size of the right
tail), and � is the difference between the number of free
parameters in the model used with EM and the null model.
There are A � 1 free parameters per column of �, so the
difference in free parameters is � = W (A � 1) for all
three model types. If the DNA palindrome constraints are
in force, half the parameters in �1 are no longer free and� = (W=2)(A � 1).

To compute the value of LRT (�) we need values of
the likelihood functions for the given and null models and
the difference in the number of free parameters between
them. For the likelihood of the given model, MEME uses

3We overlook the possibility that EM converged to a local
maximum of the likelihood function. We note also that� is actually
the mean posterior estimate of the parameters, not the MLE, when
a prior is used. In practice, the value of the likelihood function at� is close to the value at the MLE.

the value of the joint likelihood function maximized by EM.
For the null model, it is easy to show that the maximum
likelihood estimate has all columns describing motif and
background positions equal to � where � = [�a; : : : ; �z]T
is the vector of average letter frequencies in the dataset. The
log likelihood of the null model is

logPr(Xj�0) = nLXx2L�x log�x:
The criterion function which MEME minimizes isG(�) = LRT (�)1=� :
This criterion is related to the Bonferroni heuristic (Se-
ber 1984) for correcting significance levels when multiple
hypotheses are tested together. Suppose we only want to
accept the hypothesis that� is superior if it is superior to ev-
ery model with fewer degrees of freedom. There are � such
models so the Bonferroni adjustment heuristic suggests to
replace LRT (�) by LRT (�)�. The function G(�) applies
a much higher penalty for additional free parameters and
yields motif widths much closer to those chosen by human
experts than either LRT (�) or LRT (�)�.

The MEME algorithm
The complete MEME algorithm is sketched below. The
number of passes and maximum and minimum values of
motif widths to try are input by the user. If the model type
being used is OOPS, the inner loop is iterated only once since� is not relevant. For a ZOOPS model, �min = 1=(mpn)
and �max = 1=m. For a TCM model, �min = 1=(mpn)
and �max = 1=(W + 1). The dynamic programming im-
plementation of the inner loop, the EM-based heuristic for
choosing a good value of �(0) as a starting point for EM,
and the algorithms for shortening motifs and applying the
DNA palindrome constraints are omitted here due to space
limitations. They are described in a longer version of this
paper (Bailey & Elkan 1995b). The time complexity of
MEME is roughly quadratic in the size of the dataset.

procedure MEME ( X: dataset of sequences )
for pass = 1 to passmax do

for W = Wmin to Wmax by �p2 do
for �(0) = �min to �max by �2 do

Choose good �(0) given W and �(0).
Run EM to convergence from chosen
value of �(0) = (�(0); �(0);W ).
Remove outer columns of motif
and/or apply palindrome constraints
to maximize G(�).

end
end
Report model which maximizes G(�).
Update prior probabilities Ui;j to
approximate multiple-motif model.

end
end



name type N L W sites
proven total

lip protein 5 182 16 5 5
5 5

hth protein 30 239 18 30 30
farn protein 5 380 12 0 30

0 26
0 28

crp DNA 18 105 20 18 24
lex DNA 16 200 20 11 21
crplex DNA 34 150 20 18 25

11 21
hrp DNA 231 58 29 231 231

Table 1: Overview of the datasets used in developing
MEME showing sequence type, number of sequences (N),
average sequence length (L), and motif width (W). Proven
sites have been shown to be occurrences of the motif by
laboratory experiment (footprinting, mutagenesis, or struc-
tural analysis). Total sites include the proven sites and sites
reported in the literature based primarily on sequence simi-
larity with known sites.

Measuring performance
We measured the performance of the motifs discovered by
MEME by using the final sequence model output after each
pass of as a classifier. The parameters, �, of the sequence
model discovered on a particular pass are converted by
MEME into a log-odds scoring matrix LO and a thresh-
old t where LOx;j = log(px;j=px;0) for j = 1; : : : ;W
and x 2 L, and t = log((1 � �)=�). The scoring matrix
and threshold was used to score the sequences in a test set
of sequences for which the positions of motif occurrences
are known. Each subsequence whose score using LO as a
position-dependent scoring matrix exceeds the threshold t
is considered a hit. For each known motif in the test set,
the positions of the hits were compared to the positions of
the known occurrences. The number of true positive (tp),
false positive (fp), true negative (tn) and false negative (fn)
hits was tallied. From these, recall = tp=(tp + fn) and
precision = tp=(tp+ fp) were computed.

We also calculated the receiver operating characteristic
(ROC) (Swets 1988) of the MEME motifs. The ROC statis-
tic is the integral of the ROC curve, which plots the true
positive proportion, tpp = recall = tp=(tp + fn), versus
the false positive proportion, fpp = fp=(fp + tn). The
ROC statistic was calculated by scoring all the positions in
the test set using the log-odds matrix, LO, sorting the po-
sitions by score, and then numerically integrating tpp overfpp using the trapezoid rule.

MEME motifs which were shifted versions of a known
motif were detected by shifting all the known motif positions
left or right the same number of positions and repeating
the above calculations of recall, precision and ROC. All
shifts such that all predicted occurrences overlap the known
occurrences (by exactly the same amount) were tried. The

quantity mean (sd)
sequences per dataset 34 (36)
dataset size 12945 (11922)
sequence length 386 (306)
shortest sequence 256 (180)
longest sequence 841 (585)
pattern width 12.45 (5.42)

Table 2: Overview of the 75 Prosite datasets. Each dataset
contains all protein sequences in SWISS-PROT (Release
11.1) annotated in the Prosite database as true positives or
false negatives for the Prosite pattern characterizing a given
family. Dataset size and sequence length count the total
number of amino acids in the protein sequence(s).

performance values reported are those for the best shift. For
datasets with multiple known motifs, recall, precision and
ROC were calculated separately for each known motif using
each of the sequence models discovered during the passes
of MEME.

Experimental datasets
We studied the performance of MEME on a number of

datasets with different characteristics. Seven datasets which
were used in the development of MEME are summarized in
Table 1. Another 75 datasets each consisting of all the
members of a Prosite family are summarized in Table 2.

Development datasets. The protein datasets lip, hth, and
farn, were created by Lawrence et al. (1993) and used to test
their Gibbs sampling algorithm. Very briefly, the lip dataset
contains the five most divergent lipocalins with known 3D
structure. They contain two known motifs, each occurring
once in each sequence. The hth proteins contain DNA-
binding features involved in gene regulation. The farn
dataset contains isoprenyl-protein transferases, each with
multiple appearances of three motifs.

The E. coli DNA datasets, crp, lex and crplex, are de-
scribed in detail in (Bailey & Elkan 1995a). The crp se-
quences contain binding sites for CRP (Lawrence & Reilly
1990), while the lex sequences contain binding sites for
LexA; the crplex dataset is the union of the crp and lex
datasets. The E. coli promoter dataset hrp (Harley &
Reynolds 1987) contains a single motif which consists of
two submotifs with a varying number of positions (usually
about 17) between them.

Prosite datasets. The 75 Prosite families described in
general terms in Table 2 correspond approximately to the
10% of fixed-width Prosite patterns with worst combined
(summed) recall and precision. Fixed-width patterns such
as D-[SGN]-D-P-[LIVM]-D-[LIVMC] are a proper
subset of the patterns expressible by MEME motifs, and
they form a majority in Prosite. Recall and precision for
Prosite patterns and for corresponding MEME motifs were
calculated using information in the Prosite database about
matches found when searching the large (36000 sequence)
SWISS-PROT Release 11.1 database of protein sequences
(Bairoch 1994).



Performance of different model types
Table 3 shows the ROC motifs found by MEME in the de-
velopment datasets when MEME was run with the motif
width set at W � 100 for 5 passes. The first lines for each
of the three model types shows the performance of MEME
without background information—DNA palindromes were
not searched for and the one-component Dirichlet prior was
used. As expected, the ZOOPS model type outperforms both
the OOPS and TCM model types on those datasets which
conform to the ZOOPS assumptions, as seen from the higher
values of ROC for the ZOOPS model type (line 4) compared
with the OOPS model type (line 1) for datasets hrp and cr-
plex in Table 3. Accuracy is not sacrificed when all of the
sequences contain a motif occurrence: the performances of
the OOPS and ZOOPS model types are virtually identical on
the first four datasets. The TCM model type outperforms the
other two model types on the farn dataset whose sequences
contain multiple occurrences of multiple motifs.

For comparison, the last line in Table 3 shows the per-
formance of the motifs discovered using the Gibbs sampler
(Lawrence et al. 1993). The conditions of the tests were
made as close as possible to those for the MEME tests us-
ing the OOPS model type, except that the Gibbs sampler
was told the correct width of the motifs since it requires the
user to specificy the width of all motifs. With each Prosite
dataset, the Gibbs sampler was told to search for 5 motifs,
each of the width of the Prosite signature for the family, and
that each sequence contained one occurrence of each motif.
It was run with 100 independent starts (10 times the default)
to maximize its chances of finding good motifs. Note that
we did not tell either the Gibbs sampler or MEME how many
occurrences of a particular motif a particular sequence has
as was done in (Lawrence et al. 1993).

The ROC of the MEME motifs found using the ZOOPS
model type without background information is as good or
better than that of the sampler motifs for five of seven
datasets. The MEME motifs found using the OOPS model
type perform as well or better than those found by the Gibbs
sampler with four of the seven datasets. Note once again
that the Gibbs sampler was told the correct motif widths
to use, whereas MEME was not. MEME using the ZOOPS
model type does significantly better than the Gibbs sampler
on the two ZOOPS-like datasets.

The benefit of background knowledge
The efficacy of using the DNA palindrome bias and the
Dirichlet mixture prior can be seen in Table 3. ROC im-
proves in 9 out of 21 cases and stays the same with another
5. The improvements are substantial in the case of the least
constrained model type, TCM. For five of seven datasets,
using the background information results in the model with
the best or equal-best overall ROC.

The LRT-based heuristic does a good job at selecting
the “right” width for the motifs in the seven non-Prosite
datasets, especially when the DNA palindrome or Dirichlet
mixture prior background information is used. The widths
of the best motifs found by MEME are shown in Table 4.
With background information and the model type appro-
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Figure 1: The pass where MEME finds the known Prosite
motif is shown. MEME was run for five passes using the
OOPS model without any background information. ‘?’
means the known motif(s) were not found by MEME within
five passes.

priate to the dataset, the motif widths chosen by MEME
are close to the correct widths with the exception of the
lip dataset. That dataset is extremely small and the motifs
are faint, which explains why MEME underestimates their
widths.

Performance on the Prosite datasets

MEME does an excellent job of discovering the Prosite mo-
tifs in training sets consisting of entire families. This is true
with both the OOPS and ZOOPS model types and with or
without the background informationprovided by the Dirich-
let mixture prior. For 91% of the 75 Prosite families, one
of the motifs found by MEME run for five passes using the
OOPS model type and the simple prior corresponds to the
known Prosite signature (i.e., identifies the same sites in the
dataset). MEME finds multiple known motifs in many of
the Prosite families. The criterion we use for saying that
a MEME motif identifies a known Prosite pattern is that it
have ROC of at least 0.99. MEME usually discovers the
known motifs on early passes, as shown in Figure 1.

Of the 75 Prosite families we studied, 45 significantly
overlap other families. We define significant overlap to
mean two families share five or more sequences in com-
mon. If we include the motifs contained in these overlap-
ping families, there are 135 known motifs present in the 75
Prosite family datasets. When run for 5 passes using the
OOPS model type with the simple Dirichlet prior, MEME
discovers 112 of these known motifs. The ZOOPS model
type does better, discovering 117 of the 135 motifs. With
the Dirichlet mixture prior, MEME does even better, discov-
ering 119 out of 135 known motifs using either the OOPS or
ZOOPS model types.



model dataset
type OOPS-like ZOOPS-like TCM-like

crp lex hth lip hrp crplex farn
OOPS 0.9798 0.9998 0.9979 1.0000 0.9123 0.9615 0.9446
OOPS PAL 0.9792 1.0000 0.9123 0.9565
OOPS DMIX 1.0000 1.0000 0.9336
ZOOPS 0.9798 0.9999 0.9992 1.0000 0.9244 0.9881 0.9112
ZOOPS PAL 0.9792 1.0000 0.9244 0.9867
ZOOPS DMIX 1.0000 1.0000 0.9324
TCM 0.9240 0.9895 0.9888 0.9842 0.8772 0.9764 0.9707
TCM PAL 0.9786 0.9811 0.8772 0.9792
TCM DMIX 0.9841 0.9952 0.9880
OOPS GIBBS 0.9709 1.0000 1.0000 0.9999 0.8881 0.9672 0.9291

Table 3: Average ROC of the best motif discovered by MEME for all known motifs contained in dataset. Highest ROC for
each dataset is printed in boldface type. Blank fields indicate that the model type is not applicable to the dataset.

dataset
OOPS-like ZOOPS-like TCM-like

crp lex hth lip hrp crplex farn
known width 20 20 18 16 16 29 20 20 12 12 12
OOPS 15 18 15 5 6 46 29 18 7 9 10
OOPS PAL 16 16 46 24 24
OOPS DMIX 18 7 6 8 16 11
ZOOPS 15 18 21 5 6 46 21 18 12 12 9
ZOOPS PAL 16 16 46 22 20
ZOOPS DMIX 18 7 6 7 8 12
TCM 11 11 10 8 8 29 21 12 10 7 10
TCM PAL 16 9 29 20 11
TCM DMIX 11 7 7 11 7 8

Table 4: Width of the best motif discovered by MEME for all known motifs contained in dataset. Blank fields indicate that
the model type is not applicable to the dataset. A width in boldface indicates that this model type has the best average ROC
for this dataset.

model type ROC recall precision relative width shift
OOPS 0.991 (0.025) 0.805 (0.356) 0.751 (0.328) 1.297 (0.753) -0.978 (5.608)
OOPS DMIX 0.992 (0.031) 0.815 (0.349) 0.758 (0.325) 1.210 (0.677) -0.637 (5.337)
ZOOPS 0.992 (0.024) 0.823 (0.335) 0.775 (0.307) 1.307 (0.774) -0.696 (5.575)
ZOOPS DMIX 0.993 (0.026) 0.821 (0.340) 0.768 (0.314) 1.220 (0.715) -0.585 (4.890)

Table 5: Average (standard deviation) performance and width of best motifs found by MEME in the 75 Prosite datasets. All
135 known motifs contained in the datasets are considered.

model type ROC recall precision relative width
OOPS DMIX W � 100 0.971 (0.065) 0.738 (0.288) 0.725 (0.310) 1.170 (0.840)
ZOOPS DMIX, W � 100 0.960 (0.090) 0.728 (0.305) 0.699 (0.327) 1.141 (0.815)
OOPS DMIX, W = 20 0.987 (0.029) 0.820 (0.211) 0.840 (0.228) 1.896 (0.785)
OOPS GIBBS, W = 20 0.980 (0.053) 0.781 (0.242) 0.884 (0.169) 1.896 (0.785)

Table 6: Average (standard deviation) two-fold cross-validated performance of MEME and the Gibbs sampler on the 75
Prosite families. The training set consisted of half of the sequences in a given family. The test set consisted of the other half
plus half of the 36000 sequences in SWISS-PROT Release 11.1.



Small improvements are seen in the performance of
MEME motifs discovered in the Prosite datasets when the
Dirichlet mixture prior is used. This is especially true for
the datasets containing few (under 20) sequences. For the
36 Prosite datasets we used which meet this criterion and
would thus be most likely to benefit from the background
information contained in the Dirichlet mixture prior, the im-
provement in ROC is statistically significant at the 5% level
for the OOPS model type according to a paired t-test. The
motifs discovered using the ZOOPS model type are slightly
superior to those found with the OOPS model type. Ta-
ble 5 shows the average performance results on the Prosite
datasets when MEME is run for five passes with various
model types, with or without Dirichlet priors, and required
to choose the motif width in the range 5 � W � 100. The
performance values are for all 135 known motifs contained
in the 75 datasets, as described above. The difference in
ROC between the OOPS and ZOOPS model types when the
simple Dirichlet prior is used is significant at the 5% level.
When the Dirichlet mixture prior is used, the difference in
ROC between the two model types is not statistically sig-
nificant. For both model types, whether or not the Dirichlet
mixture prior is used does not make a statistically significant
difference in the ROC of the discovered motifs.

The MEME motifs are extremely similar to the Prosite
signatures. In general, they identify almost exactly the
same positions in the sequences in the families. This fact
can be seen in Table 5 from the high ROC, relative width
close to 1, and small shift of the MEME motifs.

Generalization
Cross-validation experiments show that the motifs discov-
ered by MEME on the Prosite datasets can be expected to cor-
rectly identify new members of the protein families. Table 6
shows the results of 2-fold cross-validation experiments on
the 75 Prosite families using MEME and the Gibbs sampler.
The first two lines of the table show the results when MEME
is forced to choose the motif width. The performance of the
OOPS model type is slightly better than that of the ZOOPS
model type (ROC better at 5% significance level). Perfor-
mance is better if MEME is given background information
in the form of being told a good width (W = 20), as seen
in the third line in Table 6. Then the generalization perfor-
mance (cross-validated ROC) of the MEME motifs is better
than that of sampler motifs at the 5% significance level. In
these experiments, both MEME and the Gibbs sampler were
allowed to generate only one motif per training set. The
Gibbs sampler was instructed to use motif width W = 20
and 250 (25 times the default) independent starts to ensure
that the two algorithms got approximately the same num-
ber of CPU cycles. The performance figures in Table 6 are
based on the number of hits scored on sequences in SWISS-
PROT known to be in the family, and do not require the
hit to be at any particular position within the sequence. We
used a threshold of 18 bits for determining if scores were
hits.

A direct comparison of the predicted generalization per-
formance of motifs discovered by learning algorithms such

as MEME and the Gibbs sampler with that of the Prosite
signatures is not possible. The Prosite signatures were cre-
ated by hand and cannot easily be cross-validated, so their
generalization performance is not known. However, the
average performance of the Prosite signatures on their own
training sets, ROC = 0:99(0:02), is the same as the cross-
validated performance of the MEME OOPS-model motifs
found when the algorithm is given a hint about the width
of the motifs. This is impressive since the MEME motifs
were learned from only half of the members of the families
so the cross-validated ROC is likely to be an underestimate
of the actual ROC of the motifs. The non-cross-validated
estimate of the Prosite signature performance is likely to
overestimate their actual performance on new sequences.
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