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Abstract

MEME is atool for discovering motifs in sets of protein or
DNA sequences. This paper describes several extensionsto
MEME which increase its ability to find motifs in a totally
unsupervisedfashion, but which also allow it to benefit when
prior knowledge is available. When no background knowl-
edgeisasserted, MEME obtainsincreased robustnessfrom a
method for determining motif widths automatically, and from
probabilistic models that allow motifs to be absent in some
input sequences. On the other hand, MEME can exploit prior
knowledgeabout amotif being presentin all input sequences,
about the length of a motif and whether it is a palindrome,
and (using Dirichlet mixtures) about expected patternsin in-
dividual motif positions. Extensive experimentsare reported
which support the claim that MEM E benefits from, but does
not require, background knowledge. The experiments use
seven previously studied DNA and protein sequence fami-
lies and 75 of the protein families documented in the Prosite
database of sites and patterns, Release 11.1.

I ntroduction

MEME is an unsupervised learning agorithm for discov-
ering motifs in sets of protein or DNA sequences. This
paper describes the third version of MEME. Earlier ver-
sions were described previoudly (Bailey & Elkan 1994),
(Bailey & Elkan 1995a). The MEME extensions on which
this paper focuses are methods of incorporating background
knowledge, or coping with itslack. For incorporating back-
ground knowledge, these innovationsinclude automatic de-
tection of inverse-complement palindromes in DNA se-
guence datasets, and using Dirichlet mixture priors with
protein sequence datasets. Dirichlet mixture priors bring
information about which amino acids share common prop-
erties and thus are likely to be interchangesble in a given
position in a protein motif. This paper also describes a
new type of sequence model and a new heuristic for auto-
maticaly determining the width of a motif which remove
the need for the user to provide two types of information.
The new sequence model type allows each each sequence
inthetraining set to have exactly zero or one occurrences of
each motif. Thistype of model isidealy suited to discov-
ering multiple motifsin the mgjority of cases encountered
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in practice. The motif-width heuristic allows MEME to au-
tomatically discover several motifs of differing, unknown
widthsinasingle DNA or protein dataset. We also describe
an improved method of finding multiple, different motifsin
asingle dataset.

Overview of MEME

The principal input to MEME is a set of DNA or protein
sequences. Itsprincipa outputisaseriesof probabilisticse-
guence models, each corresponding to one motif, whose pa
rameters have been estimated by expectation maximization
(Dempster, Laird, & Rubin 1977). In a nutshell, MEME's
algorithm is a combination of

e expectation maximization (EM),

e an EM-based heuristic for choosing the starting point for
EM,

e amaximum likelihood ratio-based (L RT-based) heuristic
for determining thebest number of model freeparameters,

e multistart for searching over possible motif widths, and
e greedy search for finding multiple motifs.

OOPS, ZOOPS, and TCM models

The different types of sequence model supported by MEME
make differing assumptions about how and where mo-
tif occurrences appear in the dataset. We call the sim-
plest model type OOPS since it assumes that there is ex-
actly one occurrence per sequence of the motif in the
dataset. This type of moddl was introduced by Lawrence
& Reilly (1990). This paper describes for the first time a
generdization of OOPS, called ZOOPS, which assumes zero
or one motif occurrences per dataset sequence. Finally,
TCM (two-component mixture) models assume that there
are zero or more non-overlapping occurrences of the motif
in each sequence in the dataset, as described by Bailey &
Elkan (1994).

Each of these types of sequence model consists of two
components which model, respectively, the motif and non-
motif (“background”) positions in sequences. A motif is
model ed by a sequence of discrete random variables whose
parameters give the probabilities of each of the different
letters (4 in the case of DNA, 20 in the case of proteins)



occurring in each of the different positionsin an occurrence
of the motif. The background positions in the sequences
are modeled by a single discrete random variable. If the
width of the motif is W, and the alphabet for sequences is
L ={a,...,z}, wecan describe the parameters of thetwo
components of each of the three modd types in the same
way as

0=[06 61]=[pPo P P2 ... Pw ]
Pa,O Pa,l Pa,Z s Pa,W
Pyo Poa Py ... Pyw
Pz,O Pz,l Pz,Z Pz,W

Here, P, ; isthe probability of letter + occurring at either
a background position (j = 0) or a position j of a mo-
tif occurrence (1 < j < W), fg is the parameters of the
background component of the sequence moddl, and 6; is
the parameters of the motif component.

Formally, the parameters of an OOPS model are theletter
frequencies 6 for the background and each column of the
motif, and the width W of the motif. The ZOOPS model
type adds anew parameter, v, which isthe prior probability
of asequence containing amotif occurrence. A TCM model,
which allowsany number of (non-overlapping) motif occur-
rences to exist within a sequence, replaces v with A, where
A isthe prior probability that any positionin a sequence is
the start of amotif occurrence.

DNA palindromes

A DNA paindrome is a sequence whose inverse comple-
ment is the same as the original sequence. DNA binding
sites for proteins are often paindromes. MEME models a
DNA palindrome by constraining the parameters of corre-
sponding columns of a motif to be the same:

Pa1 Pap Pio Pi1
91 — Pc,l Pc,2 Pg,Z Pg,l
Pg,l Pg,Z Pc,2 Pc,l
Pi1 Pio Pao Paa
That is,
Poi = Piwii,
P.; = Pywyi,
Pyi = Piwii-s,
P = Piwgi

fori =1,...,|[W/2]. Thelast column is an inverted
version of the first column, the second to last columnis an
inverted version of the second column, and so on. Aswill
be described below, MEME automatically chooses whether
or not to enforce the palindrome constraint, doing so only if
it improvesthe vaue of the LRT-based objective function.

Expectation maximization

Consider searching for a single motif in a set of sequences
by fitting one of the three sequence model typesto it. The
dataset of n sequences, each of length ., will bereferred to

asX ={X1,Xs,...,X,}! Theeeaem =L -W+1
possible starting positions for a motif occurrence in each
sequence. The starting point(s) of the occurrence(s) of the
motif, if any, in each of the sequences are unknown and
are represented by the the variables (called the “missing
informetion”) Z = {Z; ;|11 < i < n,1 < j < m} where
Z; ; = lif amotif occurrencestartsin position j insequence
X;, and Z; ; = 0 otherwise. The user selects one of the
three types of model and MEME attempts to maximize the
likelihood function of a model of that type given the data,
Pr(X|¢), where ¢ isavector containing all the parameters
of the model. MEME does this by using EM to maximize
the expectation of the joint likelihood of the model given
the data and the missing information, Pr(X, Z|¢). This
is doneiteratively by repeating the following two steps, in
order, until a convergence criterion is met.

e E-step: compute

W= E [7
(Z1X,6™)

e M-step: solve

¢(t+l) — argmax E

[log Pr(X, Z]9)]
o (ZIX90)

where ¢ is a vector containing al the parameters of the
model. Thisprocessisknowntoconverge(Dempster, Laird,
& Rubin 1977) to alocal maximum of the likelihood func-
tion Pr(X|¢).

Joint likelihood functions. MEME assumes each se-
guence in the training set is an independent sample from a
member of either the OOPS, ZOOPS or TCM model families
and uses EM to maximize one of the following likelihood
functions. The logarithm of the joint likelihood for models
of each of the three model typesisasfollows. For an OOPS
model, thejoint log likelihood is

log Pr(X, Z|0)
= ZZZi’j |OgP7°(XZ'|ZZ'7]' =1, 9) +n |Ogi
i=1j5=1 m
For azOOPS moded, thejoint log likelihoodis
log Pr(X, Z|6,7)
= ZZZi’j |OgP7°(XZ'|ZZ'7]' = 1, 9)

i=1j5=1

+> (1-Qi)log Pr(X;|Q; = 0,0)

i=1

+Zn:(1— Qi)log(1—7) + Zn:Qi logA.

i=1 i=1

LIt is not necessary that all of the sequences be of the same
length, but this assumption will be made in what follows in order
to simplify the exposition of the algorithm. In particular, under
this assumption, A = v/m.



For aTCM model, thejoint log likelihood is
log Pr(X, 7|0, A)

Z Z(l — Zi,j) |OgP7°(XZ'7]'|90)

i=1j5=1
+ZZ'7]' |OgP7°(XZ'7]'|91)
—1—(1 — Zi,j) |Og(1 — /\) =+ (Zi,j) |Og/\

The variable (); used in the ZOOPS likelihood equation is
defined as ; _Z Z; ;. Thus, Q; = 1if sequence X;
contains a motif occurrence and ; = 0 otherwise. The
conditional sequence probabilitiesfor sequences containing
amotif used by OOPS and ZOOPS models are defined as

|OgP7°(XZ'|ZZ'7]' = 1, 9)

w-1
= 1(i,j+ k) logpr + > X

£=0 kED,

T lngOa

whereI(7, j) isavector-valued indicator variable of length
A = |£]|, whose entries are all zero except the one corre-
sponding to the letter in sequence X; a position j, X; ;
N =11,2,...,j—1j+w,...,L} isthe set of posi-
tionsin sequence X; which lie outsidethe occurrence of the
motif when the motif starts at position j. The conditional
probability of a sequence without a motif occurrence under
az00PS model isdefined as

P?“(XZ|QZ = O, 9)

L
=[] Px.0
k=1

Theconditional probability of alength- 14 subsequence gen-
erated according to the background or motif component of
aTCM model is defined to be

Ww-1

log Pr(Xi;10:) = 1(i,j+ k)" logpy,
k=0

where ¥/ = 0if ¢ = 0 (background), and ¥’ = k + 1 if
¢ = 1 (motif).

The E-step. The E-step of EM calculates the expected
value of the missing information—the probability that a
motif occurrence starts in position j of sequence X;. The
formulas used by MEME for the three types of model are
given below. Derivations are given elsewhere (Bailey &
Elkan 1995b). For an OOPS mode,

P?“(XZ'|ZZ'7]' = 1, 9(0)
Yieq Pr(Xi|Zij = 1,000)

(1)
Z;

For azOOPS modsd!,

7 = L
“J f0+zk:1fk

where

fo = Pr(X;|Q; =0,60)1-~") and
fi = Pr(Xi|Zi; =1,00)0\0 1<j<m.

For aTCM modd,
PO Pr(X,;|0)A® .
7 Pr(X, j1657)(1 = AD) + Pr(X; ;16520

TheM-step. The M-step of EM in MEME reestimates ¢
using the following formulafor models of al three types:

(t+1) _ ¢k +dy

= , 0< k < W, where
Pi lex +di|”  — —

t— Y ¢ itk =0,
C =
' PP Dy 122(?1(Z j+k—1) othewise

Hered;, isavector of pseudo-countswhich isused to incor-
porate background informationinto EM as will be described
later, t isthe length- A vector of total counts of each letter
the dataset, and |x| is the sum of the components of vector
x. For ZOOPS and TCM models, parameters v and A are
reestimated during the M-step by the formula

T

zl]l

A+ — 'Y( * )

Finding multiple motifs

All three sequence model types supported by MEME model
sequences containing a single motif (albeit a TCM model
can describe sequences with multiple occurrences of the
same motif). To find multiple, non-overlapping, different
motifs in a single dataset, MEME uses greedy search. It
incorporates information about the motifs aready discov-
ered into the current model to avoid rediscovering the same
motif. The process of discovering one motif iscalled apass
of MEME.

The three sequence model types used by MEME assume,
a priori, that motif occurrences are equally likely at each
position j in sequence X;. This trandates into a uniform
prior probability distribution on the missing data variabl es
Z; ;. That is, initially, MEME assumes that Pr(Z; ; =
1) = A foral Z; ;.2 On the second and subsequent passes,
MEME changes this assumption to approximate a multiple-
motif sequence model. A new prior on each Z; ; is used
during the E-step that takesinto account the probability that
anew width-1# motif occurrence starting at position X; ;
might overlap occurrences of the motifsfound on previous
passes of MEME.

To help compute the new prior on Z; ; we introducevari-
ables V; ; where V; ; = 1if awidth-W motif occurrence
could start at position j in sequence X; without overlap-
ping an occurrence of a motif found on a previous pass.
Otherwise V; ; = 0.

V. = 1, if noold motifsin [X;, ..., X; yw—1]
g 0, otherwise
fori=1,...,nandj=1...,L

°For an OOPS model, X = 1/m. For a ZOOPS model,
A= v/m.



To compute V; ; we use another set of binary variables
Us; ; which encode which positions in the dataset are not
contained in occurrences of previoudy found motifs. So,
U; ; isdefined as

U — 1, if X; ; & previous motif occurrence
J 0, otherwise
fori=1,...,nandj=1...,m

As with the missing information verisbles Z; ;, MEME
computes and stores the expected values of the variables
U; ;. Before the first pass of MEME, the probability that
X; ; isnot aready contained in amotif, the expected value

of U”,|ssett00ne U(?) l1for7 = 1,...,n and
j=1... L. These values are updated after each pass
accordi ng to theformula

(r) _ (r=D¢1 _ Q)
Uy = Uy (= _ max Z) (D)

where Z( ) isthefinal estimate of the miss ng information
a the ené of the current pass, p. Intuitively, we change
the estimate of .X; ; not being part of some motif by multi-
plying it by the probability of it not being contained in an
occurrence of the current motif. Thiswe estimate using the
most probable motif occurrence of the current width that

would overlap it. We use the maximum of Z(t) because
occurrences of the current motif cannot overlap themsel Ves,

hence the values of Z; () are not independent, so the up-
per bound on the probabl lity used hereis appropriate. The

value of Ui(’]’.) isthen used as thevalue for Pr(U; ; = 1) in
equation (2) below during the next pass, p + 1.

MEME estimates the probability of a width-117 motif oc-
currence not overlapping an occurrence of any previous
motif as the minimum of the probability of each position
within the new motif occurrence not being part of an oc-
currence found on a previous pass. In other words, MEME
estimates Pr(V; ; = 1) as

P?“(Vm' =1 = min

k=i, j+W—1 Pr(Uix=1). (2

The minimum is used because motif occurrences found on
previous passes may not overlap (by assumption) so the
values of U; ; are not independent. An approximate for-
mulafor reestimating Z; ; in the E-step of EM which takes
motifs found on previous passes into account and thus ap-
proximates a multiple-motif model can be shown to be

ZY = B [Zi;) Pr(Vij =1).
(Z|X,6M)

MEME uses Z(t]) in place of Z(t) in the M-step of EM and
in equation (1) above.

Using prior knowledge about motif columns

Applied to models of the forms described above, the EM
method suffers from two problems. Firgt, if any letter fre-
guency parameter is ever estimated to be zero during EM,
it remains zero. Second, if the dataset size is small, the

maximum likelihood estimates of the letter frequency pa-
rameters tend to have high variance. Both these problems
can be avoided by incorporating prior information about the
possible values which the letter frequency parameters can
take.

Using a mixture of Dirichlet densities as a prior in the
estimation of the parameters of a model of biopolymer se-
guences has been proposed by Brown et al. (1993). This
approach makes sense especially for proteinswhere many of
the 20 | ettersin the sequence al phabet have similar chemical
properties. Motif columns which give high probability to
two (or more) letters representing similar amino acids are a
priori morelikely. A Dirichlet mixturedensity hastheform
p = qip1+ ...+ qrpr Where p; is a Dirichlet probabil-
ity density functionwith parameter 8() = (8", ..., 3.
A simple Dirichlet prior is the specia case of a Dirichlet
mixture prior where R = 1.

MEME uses Dirichlet mixturepriorsasfollows. Inthe M-
step, the mean posterior estimates of the parameter vectors
p:, ¢ = 1to W, are computed instead of their maximum
likelihood estimates. Let ¢ = [cq4,. .., c.]” bethe vector
of expected countsof lettersa, . . ., z incolumn & of themo-
tif. We will consider thisto be the “observed” letter counts
in column & of themotif. The probability of component j in
the Dirichlet mixture having generated the observed counts
for column k is calculated using Bayesrule,

4 Pr(ex|89))
SOy i Priex] 89)
If we define ¢ = Jex| = >
Yeec B, then

Pr(BYey)

vec e and BO) = [50)] =

Prc|gY)) =

M(c+ 1)r(p)) M(ce 4 610))
M (c+ b)) H r(bG))

where () is the gamma function. We estimate the vector
of pseudo-countsd;, = [d%,d¥, ..., d5]T

R
> o Pr(pPVen)pd), z e L.

ji=1

The mean posterior estimate of the letter probabilitiespy, is
then

(t+1) _ cr +di

k e + dy|

for k = 1to W. This gives the Bayes estimate of the
letter probabilitiesfor column & of the motif and isused to
reestimate 6 in the M-step.

Brownet al. (1993) havepublished several Dirichlet mix-
ture densities that model well the underlying probability
distribution of the letter frequencies observed in multiple
alignments of protein sequences. The experiments reported
inthispaper useeither their 30-component Dirichlet mixture
prior or a 1-component prior where 51 isjust the average
letter frequenciesin the dataset.



Determining the number of model free parameters

The number of free parameters in a model of any of the
MEME sequence model types depends on the width of the
motif and on whether or not the DNA palindrome con-
straints are in force. When the width of the motifsis not
specified by the user and/or when MEME is asked to check
for DNA palindromes, MEME chooses the number of free
parameters to use by optimizing a heuristic function based
on the maximum likelihood ratio test (LRT).

The LRT isbased upon the following fact (Kendall, Stu-
art, & Ord 1983). Suppose we successively apply con-
graints Cy, ..., Cs to amodel with parameters ¢ and let
¢(s) be the maximum likelihood estimator of ¢ when all

congtraints 1y, . . ., C's have been applied. Then, under cer-
tain conditions, the asymptotic distribution of the statistic
Pr(X|¢)
2
x°=2log ————
Pr(X|ew))

is central y? with degrees of freedom equal to the num-
ber of independent constrai nts upon parameters imposed by
C1,...,Cs.

MEME uses the LRT in an unusual way to compute a
measure of statistical significance for a single model by
comparing it to a“universal” null moddl. The null model
is designed to be the simplest possible modd of a given
type. Let ¢ be the parameters of a model discovered by
MEME using EM. Then, ¢ is the maximum likelihood es-
timate (MLE) for the parameters of the model.® Likewise,
let ¢o be the maximum likelihood estimate for the parame-
ters of the null model. Since both ¢ and ¢ are maximum
likelihood estimates, the LRT can be applied to these two
models. At some significance level between 0 and 1, the
LRT would regject the null mode! in favor of the more com-
plicated model. We define LRT(¢) to be thissignificance
level, so

LRT(6) = Q(x*|v). where
2\ /)P -(1-3)
QIX|v) = Q(x2), 2 270r)

(Abramowitz & Stegun 1972). Q(x2) is the @ function
for the standard normal distribution (i.e., size of the right
tail), and v is the difference between the number of free
parameters in the model used with EM and the null model.
There are A — 1 free parameters per column of ¢, so the
difference in free parameters is v = W(A4 — 1) for dl
three model types. If the DNA palindrome constraints are
in force, haf the parameters in ¢1 are no longer free and
v=(W/2)(A-1).

To compute the value of LRT(¢) we need values of
the likelihood functions for the given and null models and
the difference in the number of free parameters between
them. For the likelihood of the given model, MEME uses

3We overlook the possibility that EM converged to a local
maximum of thelikelihood function. Wenotealso that ¢ isactualy
the mean posterior estimate of the parameters, not the MLE, when
aprior isused. In practice, the value of the likelihood function at
¢ iscloseto the value at the MLE.

thevalue of thejoint likelihood function maximized by EM.
For the null modél, it is easy to show that the maximum
likelihood estimate has al columns describing motif and
background positionsequal to p« where gt = [p, . . ., p.]7
isthevector of average | etter frequenciesin thedataset. The
log likelihood of the null model is

logPr(X|go) = nLY_ palogp,.

zeL

The criterion function which MEME minimizesis
G(¢) = LRT ()"

This criterion is related to the Bonferroni heuristic (Se-
ber 1984) for correcting significance levels when multiple
hypotheses are tested together. Suppose we only want to
accept the hypothesisthat ¢ issuperior if itissuperior to ev-
ery model with fewer degrees of freedom. There are v such
models so the Bonferroni adjustment heuristic suggests to
replace LRT(¢) by LRT(¢)v. The function G/(-) applies
a much higher penalty for additional free parameters and
yields motif widths much closer to those chosen by human
expertsthan either LRT'(¢) of LRT(¢)v.

The MEME algorithm

The complete MEME agorithm is sketched below. The
number of passes and maximum and minimum values of
motif widthsto try are input by the user. If the moddl type
being used isOOPS, theinner loopisiterated only oncesince
A isnot relevant. For a ZOOPS model, A,.;, = 1/(m\/n)
and A4y = 1/m. For a TCM model, A = 1/(m/n)
and A = 1/(W + 1). The dynamic programming im-
plementation of the inner loop, the EM-based heuristic for
choosing a good vaue of 4% as a starting point for EM,
and the algorithms for shortening motifs and applying the
DNA palindrome constraints are omitted here due to space
limitations. They are described in a longer version of this
paper (Bailey & Elkan 1995b). The time complexity of
MEME isroughly quadratic in the size of the dataset.

procedure MEME ( X': dataset of sequences)
for pass = 1t0 pass,,q, do
for W = Wiin 10 Wae by xv/2do
for A = X,,in t0 Xae by x2do
Choose good 4(9) given W and A(©).
Run EM to convergence from chosen
value of (@ = (619 A0 W),
Remove outer columns of motif
and/or apply palindrome constraints
to maximize G(¢).
end
end
Report model which maximizes G'(¢).
Update prior probabilities U; ; to
approximate multiple-motif model.
end
end



name | type N L | W Sites
proven | total
lip protein 51182 | 16 5 5
5 5
hth protein | 30| 239 | 18 30 30
farn protein 51380 | 12 0 30
0 26
0 28
crp DNA 18 | 105 | 20 18 24
lex DNA 16 | 200 | 20 11 21
crplex | DNA 341|150 | 20 18 25
11 21
hrp DNA 231 58| 29 231 | 231

Table 1: Overview of the datasets used in developing
MEME showing sequence type, number of sequences (N),
average sequence length (L), and motif width (W). Proven
sites have been shown to be occurrences of the motif by
laboratory experiment (footprinting, mutagenesis, or struc-
tural analysis). Totd sitesincludethe proven sitesand sites
reported in the literature based primarily on sequence simi-
larity with known sites.

M easuring performance

We measured the performance of the motifs discovered by
MEME by using thefinal sequence model output after each
pass of as a classifier. The parameters, ¢, of the sequence
model discovered on a particular pass are converted by
MEME into a log-odds scoring matrix LO and a thresh-
old ¢t where LO, ; = l0Q(ps;/peo) forj = 1,..., W
and z € £,andt = log((1 — A)/A). The scoring matrix
and threshold was used to score the sequences in atest set
of sequences for which the positions of motif occurrences
are known. Each subseguence whose score using 2O as a
position-dependent scoring matrix exceeds the threshold ¢
is considered a hit. For each known motif in the test s,
the positions of the hits were compared to the positions of
the known occurrences. The number of true positive (tp),
fase positive (fp), true negative (tn) and fal se negative (fn)
hits was talied. From these, recal = tp/(tp + fn) and
precision = ¢p/(tp + fp) were computed.

We also calculated the receiver operating characteristic
(ROC) (Swets 1988) of the MEME motifs. The ROC statis-
tic is the integra of the ROC curve, which plots the true
positive proportion, tpp = recall = i¢p/(tp + fn), versus
the false positive proportion, fpp = fp/(fp +tn). The
ROC datistic was calculated by scoring al the positionsin
the test set using the log-odds matrix, O, sorting the po-
sitions by score, and then numericaly integrating ¢pp over
fpp using the trapezoid rule.

MEME motifs which were shifted versions of a known
motif weredetected by shifting all theknownmotif positions
left or right the same number of positions and repeating
the above caculations of recal, precison and ROC. All
shiftssuch that all predicted occurrences overlap the known
occurrences (by exactly the same amount) were tried. The

guantity mean (sd)
sequences per dataset 34 (36)
dataset size 12945 (11922)
sequence length 386 (306)
shortest sequence 256 (180)
longest sequence 841 (585)
pattern width 12.45 (5.42)

Table 2: Overview of the 75 Prosite datasets. Each dataset
contains al protein sequences in SWISS-PROT (Release
11.1) annotated in the Prosite database as true positives or
fal se negativesfor the Prosite pattern characterizing agiven
family. Dataset size and sequence length count the total
number of amino acids in the protein sequence(s).

performance valuesreported are thosefor the best shift. For
datasets with multiple known motifs, recall, precision and
ROC werecal cul ated separately for each known motif using
each of the sequence models discovered during the passes
of MEME.

Experimental datasets

We studied the performance of MEME on a number of
datasetswith different characteristics. Seven datasetswhich
were used in the devel opment of MEME are summarized in
Table 1. Another 75 datasets each consisting of al the
members of a Prositefamily are summarized in Table 2.

Development datasets. The protein datasetslip, hth, and
farn, were created by Lawrence et al. (1993) and used to test
their Gibbs sampling algorithm. Very briefly, thelip dataset
contains the five most divergent lipocalins with known 3D
structure. They contain two known motifs, each occurring
once in each sequence. The hth proteins contain DNA-
binding features involved in gene regulation. The farn
dataset contains isoprenyl-protein transferases, each with
multiple appearances of three motifs.

The E. coli DNA datasets, crp, lex and crplex, are de-
scribed in detail in (Bailey & Elkan 19958). The crp se-
guences contain binding sites for CRP (Lawrence & Reilly
1990), while the lex sequences contain binding sites for
LexA; the crplex dataset is the union of the crp and lex
datasets. The E. coli promoter dataset hrp (Harley &
Reynolds 1987) contains a single motif which consists of
two submotifs with a varying number of positions (usually
about 17) between them.

Prosite datasets. The 75 Prosite families described in
genera terms in Table 2 correspond approximately to the
10% of fixed-width Prosite patterns with worst combined
(summed) recall and precision. Fixed-width patterns such
asD[SGN-DP-[LIVM-D[LIVM] are a proper
subset of the patterns expressible by MEME motifs, and
they form a mgjority in Prosite. Recall and precision for
Prosite patterns and for corresponding MEME motifs were
caculated using information in the Prosite database about
matches found when searching the large (36000 segquence)
SWISS-PROT Release 11.1 database of protein sequences
(Bairoch 1994).



Performance of different modd types

Table 3 shows the ROC motifs found by MEME in the de-
velopment datasets when MEME was run with the motif
width set at W < 100 for 5 passes. Thefirst linesfor each
of the three moddl types shows the performance of MEME
without background information—DNA palindromes were
not searched for and the one-component Dirichlet prior was
used. Asexpected, thezOOPSmodel typeoutperformsboth
the OOPS and TCM model types on those datasets which
conform to the ZOOPS assumptions, as seen from the higher
values of ROC for thezOOPS model type (line4) compared
with the OOPS model type (line 1) for datasets hrp and cr-
plex in Table 3. Accuracy is not sacrificed when all of the
sequences contain amotif occurrence: the performances of
the OOPS and ZOOPS model typesare virtualy identical on
thefirst four datasets. The TCM model type outperformsthe
other two model types on the farn dataset whose sequences
contain multiple occurrences of multiple motifs.

For comparison, the last line in Table 3 shows the per-
formance of the motifs discovered using the Gibbs sampler
(Lawrence et al. 1993). The conditions of the tests were
made as close as possible to those for the MEME tests us-
ing the OOPS model type, except that the Gibbs sampler
wastold the correct width of the motifssince it requiresthe
user to specificy the width of al motifs. With each Prosite
dataset, the Gibbs sampler was told to search for 5 motifs,
each of thewidth of the Prosite signaturefor the family, and
that each sequence contained one occurrence of each motif.
It was run with 100 independent starts (10 times the default)
to maximize its chances of finding good motifs. Note that
wedid not tell either the Gibbs sampler or MEME how many
occurrences of a particular motif a particular sequence has
aswas donein (Lawrence et al. 1993).

The ROC of the MEME motifs found using the ZOOPS
model type without background information is as good or
better than that of the sampler motifs for five of seven
datasets. The MEME motifs found using the OOPS model
type perform aswell or better than those found by the Gibbs
sampler with four of the seven datasets. Note once again
that the Gibbs sampler was told the correct motif widths
to use, whereas MEME was not. MEME using the ZOOPS
model type does significantly better than the Gibbs sampler
on the two ZOOPS-like datasets.

The benefit of background knowledge

The efficacy of using the DNA palindrome bias and the
Dirichlet mixture prior can be seen in Table 3. ROC im-
provesin 9 out of 21 cases and stays the same with another
5. The improvements are substantia in the case of the least
constrained model type, TCM. For five of seven datasets,
using the background information results in the model with
the best or equal-best overall ROC.

The LRT-based heuristic does a good job at selecting
the “right” width for the motifs in the seven non-Prosite
datasets, especially when the DNA palindrome or Dirichlet
mixture prior background information isused. The widths
of the best motifs found by MEME are shown in Table 4.
With background information and the model type appro-

20 25 30

number of experiments (total 75)
10 15

1 2 3 4 5 ?
pass with ROC over .99

Figure 1: The pass where MEME finds the known Prosite
motif is shown. MEME was run for five passes using the
OOPS model without any background information. *?
means theknown motif(s) were not found by MEME within
five passes.

priate to the dataset, the motif widths chosen by MEME
are close to the correct widths with the exception of the
lip dataset. That dataset is extremely small and the motifs
are faint, which explains why MEME underestimates their
widths.

Performance on the Prosite datasets

MEME does an excellent job of discovering the Prosite mo-
tifsin training sets consisting of entirefamilies. Thisistrue
with both the OOPS and ZOOPS model types and with or
without the background i nformation provided by the Dirich-
let mixture prior. For 91% of the 75 Prosite families, one
of the motifs found by MEME run for five passes using the
OOPS model type and the simple prior corresponds to the
known Prositesignature(i.e., identifiesthe same sitesinthe
dataset). MEME finds multiple known motifs in many of
the Prosite families. The criterion we use for saying that
a MEME motif identifies a known Prosite pattern is that it
have ROC of at least 0.99. MEME usually discovers the
known motifson early passes, as shown in Figure 1.

Of the 75 Prosite families we studied, 45 significantly
overlap other families. We define significant overlap to
mean two families share five or more sequences in com-
mon. If we include the motifs contained in these overlap-
ping families, there are 135 known motifs present in the 75
Prosite family datasets. When run for 5 passes using the
OOPS modd type with the ssmple Dirichlet prior, MEME
discovers 112 of these known motifs. The ZOOPS model
type does better, discovering 117 of the 135 motifs. With
the Dirichlet mixture prior, MEME does even better, discov-
ering 119 out of 135 known motifsusing either the OOPS or
ZOOPS model types.



model dataset
type OOPS-Tike ZOOPS-Tike TCM-like
crp lex hth lip hrp crplex farn

OOPS 0.9798 0.9998 0.9979 1.0000 | 0.9123 0.9615 0.9446
OOPS_PAL 0.9792 1.0000 0.9123 0.9565
OOPS_DMIX 1.0000 1.0000 0.9336
ZOOPS 09798 0.9999 0.9992 1.0000 | 0.9244 0.9881 0.9112
ZOOPS_PAL 0.9792 1.0000 0.9244 0.9867
ZOOPS_DMIX 1.0000 1.0000 0.9324
TCM 09240 09895 0.9888 0.9842 | 0.8772 0.9764 0.9707
TCM_PAL 0.9786 0.9811 0.8772 0.9792

TCM_DMIX 0.9841 0.9952 0.9880
OOPSGIBBS | 09709 1.0000 1.0000 0.9999 | 0.8881 0.9672 0.9291

Table 3: Average ROC of the best motif discovered by MEME for al known motifs contained in dataset. Highest ROC for
each dataset is printed in boldface type. Blank fields indicate that the model typeis not applicable to the dataset.

dataset
OOPS-like ZOOPS-like TCM-like
cp lex hth lip hrp  crplex farn
known width 200 20] 18716 16| 29]20 20|12 12 12
OOPS 15/ 18| 15| 5 6| 46|29 18] 7 9 10
OOPS_PAL 16 | 16 46 | 24 24
OOPS_DMIX 8| 7 6 8 16 11
ZOOPS 15/ 18| 21| 5 6| 46|21 18|12 12 9
ZOOPS_PAL 16 | 16 46| 22 20
ZOOPS_DMIX 18 7 6 7 8 12
TCM 1111|110 8 8| 29|21 12|10 7 10
TCM_PAL 16 9 29|20 11
TCM_DMIX 1| 7 7 1 7 8

Table 4: Width of the best motif discovered by MEME for all known motifs contained in dataset. Blank fields indicate that
the moddl typeis not applicable to the dataset. A width in boldface indicates that this mode type has the best average ROC
for this dataset.

model type ROC recall precision relative width shift

OOPS 0991 (0.025) | 0.805 (0.356) | 0.751 (0.328) | 1.297 (0.753) | -0.978 (5.608)
OOPS_DMIX 0992 (0.031) | 0.815 (0.349) | 0.758 (0.325) | 1.210 (0.677) | -0.637 (5.337)
ZOOPS 0992 (0.024) | 0.823 (0.335) | 0.775 (0.307) | 1.307 (0.774) | -0.696 (5.575)
ZOOPSDMIX | 0.993 (0.026) | 0.821 (0.340) | 0.768 (0.314) | 1.220 (0.715) | -0.585 (4.890)

Table 5: Average (standard deviation) performance and width of best motifs found by MEME in the 75 Prosite datasets. All
135 known motifs contained in the datasets are considered.

model type ROC recall precision relative width
OOPS.DMIX W < 100 0971 (0.065) | 0.738 (0.288) | 0.725 (0.310) | 1.170 (0.840)
ZOOPS.DMIX, 1/ < 100 || 0.960 (0.090) | 0.728 (0.305) | 0.699 (0.327) | 1.141 (0.815)
OOPSDMIX, W =20 0.987 (0.029) | 0.820 (0.211) | 0.840 (0.228) | 1.896 (0.785)
OOPS_GIBBS, W = 20 0.980 (0.053) | 0.781 (0.242) | 0.884 (0.169) | 1.896 (0.785)

Table 6: Average (standard deviation) two-fold cross-validated performance of MEME and the Gibbs sampler on the 75
Prosite families. The training set consisted of half of the sequences in agiven family. The test set consisted of the other half
plus half of the 36000 sequences in SWISS-PROT Release 11.1.



Small improvements are seen in the performance of
MEME motifs discovered in the Prosite datasets when the
Dirichlet mixture prior is used. Thisis especidly true for
the datasets containing few (under 20) sequences. For the
36 Prosite datasets we used which meet this criterion and
would thus be most likely to benefit from the background
information contained in the Dirichlet mixture prior, theim-
provement in ROC isstatistically significant at the 5% level
for the OOPS model type according to a paired t-test. The
motifs discovered using the ZOOPS model type are dightly
superior to those found with the OOPS modd type. Tea
ble 5 shows the average performance results on the Prosite
datasets when MEME is run for five passes with various
model types, with or without Dirichlet priors, and required
to choose the motif widthin therange 5 < 17 < 100. The
performance values are for al 135 known motifs contai ned
in the 75 datasets, as described above. The difference in
ROC between the OOPS and ZOOPS model types when the
simple Dirichlet prior is used is significant at the 5% level.
When the Dirichlet mixture prior is used, the differencein
ROC between the two model typesis not statistically sig-
nificant. For both model types, whether or not the Dirichlet
mixtureprior isused doesnot make a statistically significant
difference in the ROC of the discovered motifs.

The MEME motifs are extremely similar to the Prosite
signatures. In general, they identify almost exactly the
same positions in the sequences in the families. This fact
can be seen in Table 5 from the high ROC, relative width
closeto 1, and small shift of the MEME motifs.

Generalization

Cross-validation experiments show that the motifs discov-
ered by MEME on the Prosite datasets can be expected to cor-
rectly identify new members of theproteinfamilies. Table6
shows the results of 2-fold cross-validation experiments on
the 75 Prosite families using MEME and the Gibbs sampler.
Thefirst two lines of the table show theresultswhen MEME
isforced to choose the motif width. The performance of the
OOPS model type is dlightly better than that of the ZOOPS
model type (ROC better at 5% significance level). Perfor-
mance is better if MEME is given background information
in the form of being told a good width (W = 20), as seen
in thethird linein Table 6. Then the generaization perfor-
mance (cross-validated ROC) of the MEME motifsis better
than that of sampler motifs at the 5% significance level. In
these experiments, both MEME and the Gibbs sampler were
allowed to generate only one motif per training set. The
Gibbs sampler was instructed to use motif width 117 = 20
and 250 (25 times the default) independent starts to ensure
that the two agorithms got approximately the same num-
ber of CPU cycles. The performance figuresin Table 6 are
based on the number of hits scored on sequencesin SWISS-
PROT known to be in the family, and do not require the
hit to be at any particular position within the sequence. We
used a threshold of 18 bits for determining if scores were
hits.

A direct comparison of the predicted generalization per-
formance of motifs discovered by learning algorithms such

as MEME and the Gibbs sampler with that of the Prosite
signaturesis not possible. The Prosite signatures were cre-
ated by hand and cannot easily be cross-validated, so their
generaization performance is not known. However, the
average performance of the Prosite signatures on their own
training sets, ROC = 0.99(0.02), is the same as the cross-
validated performance of the MEME OOPS-modd motifs
found when the agorithm is given a hint about the width
of the motifs. Thisis impressive since the MEME motifs
were learned from only half of the members of the families
so the cross-vaidated ROC islikely to be an underestimate
of the actual ROC of the motifs. The non-cross-validated
estimate of the Prosite signature performance is likely to
overestimate their actual performance on new sequences.
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