Announcements 3/6

- Read Angermueller et al. (2016)
 - Deep learning for computational biology
 - Can skim the image analysis sections
- Optionally read Ward and Kellis (2012)
 - Interpreting noncoding genetic variants
- Optionally read Zhou and Troyanskaya (2015)
 - DeepSEA
- HW2 due Thursday
 - Track your late days, see policy on website

- Midterm on Tuesday, March 13 in class
- No printed materials allowed
- No calculations
- Covers material through Thursday's lecture (epigenetics, Gaussian process, PIQ, and ROC curves but not non-coding variants and deep learning)

- Content includes (but is not limited to) material from lecture and required reading:
 - Bailey and Elkan (1995)
 - Lawrence et al. (1993)
 - Elemento et al. (2007)
 - Storey and Tibshirani (2003)
 - Sherwood et al. (2014)
 - Lever et al. (2016)
- Optional reading will also be helpful, provides background, details, and motivation not written in lecture slides

- Focus on terms, concepts, strengths/weaknesses, algorithmic strategies
 - Why or in what cases would we use one method or experimental technology instead of another?
 - How does method X compare to method Y and what are the unique advantages of each?
 - What is important concept Z (e.g. mutual information)?
 - What does a method optimize? How does it converge?
 - What assumptions does a method make?
 - How does a method implement important concepts and strategies?
 - What do we need to consider when analyzing a particular type of data?

- Example questions
 - What different assumptions to the MEME OOPS and ZOOPS models make?
 - Which motif-finding algorithm is best if the user wants to account for the probability a motif was generated by the background distribution?
 - What is FWER and what does it measure?
 - Draw an example of a dependency among two continuous variables that could be detected with mutual information but not Pearson's correlation.
 - Why is DNA methylation status valuable when interpreting gene regulation?