
University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Anthony Gitter Due: Thu, Mar 8, 2018 11:59 PM

1/9

Assignment goals

 Use mutual information to reconstruct gene expression networks

 Evaluate classifier predictions

 Examine Gibbs sampling for a Markov random field

 Control for multiple hypothesis testing with q-values

Instructions

 To submit your assignment, log in to the biostat server
mi1.biostat.wisc.edu or mi2.biostat.wisc.edu using your biostat
username and password.

 Copy all relevant files to the directory
/u/medinfo/handin/bmi776/hw2/<USERNAME> where <USERNAME> is your
biostat username. Submit all of your Python source code and test
that it runs on mi1.biostat.wisc.edu or mi2.biostat.wisc.edu without
error. Do not test your code on adhara.biostat.wisc.edu.

 For the rest of the assignment, compile all of your answers in a single
file and submit as solution.pdf.

 Write the number of late days you used at the top of solution.pdf.

 For the written portions of the assignment, show your work for partial
credit.

Part 1: Mutual information in regulatory networks
In class, we saw how FIRE uses mutual information to detect relationships
between sequence motifs and gene expression levels. Mutual information
is also a popular technique for reconstructing transcriptional regulatory
networks from gene expression datasets1. After measuring gene
expression levels for all genes in a sufficient number of biological
conditions, mutual information can detect some types of pairwise
dependencies that may suggest one gene is a regulator (transcription
factor) and another is its target. Fluctuations in the regulator’s expression
can influence the expression levels of the target gene. We can create an
undirected gene-gene network by computing mutual information for all pairs
of genes. Thresholding the mutual information produces a set of gene-
gene edges.

1 http://link.springer.com/article/10.1186%2F1471-2105-7-S1-S7

http://link.springer.com/article/10.1186%2F1471-2105-7-S1-S7

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Anthony Gitter Due: Thu, Mar 8, 2018 11:59 PM

2/9

For this assignment, we will use the DREAM32 network inference challenge
dataset. The file data.txt has a 21 time point simulation of the gene
expression levels for ten genes over four simulated replicates. The first line
of the file provides the column labels. The first column is the time point,
which you will not need. The other columns are the expression levels of
the gene named in the first line, where genes are represented with a
numeric index. The file is in a tab-delimited format.

1A: Mutual information via discrete binning
Complete the program CalcMI.py using the provided template that takes as
input the expression data for a set of genes over a number of conditions
and reconstructs pairwise gene-gene dependencies using mutual
information. The program will output the list of gene-gene dependencies
and their mutual information. It should only consider the dependencies
between pairs of unique genes, not the mutual information of a gene and
itself (the entropy of that gene’s expression).

Compute mutual information by discretizing the gene expression values,
mapping continuous gene expression into discrete bins, as in HW0. For a
pair of genes, for example G1 and G2, construct a count matrix that tracks
the number of times G1’s expression is in some bin 𝑎 and G2’s expression
is in some bin 𝑏. Add a pseudocount of 0.1 to all entries in the G1:G2
count matrix. From this count matrix, you can compute the terms 𝑃(𝐺1 =
𝑎), 𝑃(𝐺2 = 𝑏), and 𝑃(𝐺1 = 𝑎, 𝐺2 = 𝑏) needed to calculate mutual
information.

You can run your program from the command line as follows:

CalcMI.py –-dataset=<dataset> --bin_num=<bins> –-out=<out>

where

 <dataset> is the name of the text file that contains the gene
expression data formatted according to the description above.

 <bin_num> is an integer that represents the number of bins that should
be used to discretize the continuous gene expression data when
calculating the mutual information. In this part, you should use a

2 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009202

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009202

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Anthony Gitter Due: Thu, Mar 8, 2018 11:59 PM

3/9

uniform binning of the gene expression range. For example, if a gene
has expression values in the range [1, 11] and bin_num = 4, the bins
would be [1, 3.5), [3.5, 6), [6, 8.5), and [8.5, 11]. Later, you will
consider an alternative strategy so make your code flexible.

 <out> is the name of the text file into which the program will print all
unique gene pairs and their mutual information values in decreasing
order. After rounding mutual information to three decimal places,
break ties based on the index of the first gene and then the index of
the second gene if needed, sorting genes indexes in ascending
order3. Each line in the file should contain the undirected gene-gene
edge and its mutual information separated by a tab ‘\t’. The file should
be formatted as follows:

(6,9) 0.817

(3,10) 0.633

... ...

(5,8) 0.480

(3,7) 0.463

... ...

(8,9) 0.427

1B: Implement a different binning strategy
In this part, you will try a different binning strategy for the gene expression
data. Add a new argument str to implement the equal density binning
strategy. This uses a percentile-based assignment to assign expression
values to bins, as in HW0. For example, with bin_num = 2 and str =
density, the lowest 50% of a gene’s expression values would be mapped to
bin 0 and the highest 50% would be mapped to bin 1.

You can run your program from the command line as follows:

CalcMI.py –-dataset=<dataset> --bin_num=<bins> --str=density

 –-out=<out>

3 See https://docs.python.org/3/howto/sorting.html for sorting tips

https://docs.python.org/3/howto/sorting.html

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Anthony Gitter Due: Thu, Mar 8, 2018 11:59 PM

4/9

1C: Mutual information via kernel density estimation
The definition of mutual information naturally extends to continuous random
variables. In this part, you will calculate mutual information of gene pairs
on the same data using a kernel density estimator with a Gaussian kernel.
Kernel density estimation is a nonparametric method for learning a smooth
probability density function (pdf) from observed data. A kernel density
estimator for 𝑛 training points 𝑥1, ⋯ , 𝑥𝑛 is defined to be

𝑓�̂�(𝑥) =
1

𝑛ℎ
 ∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

where the kernel 𝐾 enables the smoothing effect and the bandwidth ℎ
determines how influential a point is in its neighborhood.

To abstract away the technical details of the kernel, you are required to use
the SciPy function gaussian_kde for estimating the pairwise joint probability
distribution of gene expression levels4. Continuous mutual information is
defined with a double integral over both variables. To avoid the integration,
you will sample the estimated pdf on a 100×100 grid of points uniformly
distributed in the region [-0.1, 1.1]×[-0.1,1.1] and use the sampled densities
to approximate the estimated pdf5. Add 0.001 to the density at each
sampling location in the grid to avoid precision error. The marginal
probability of a single gene expression level can then be estimated via
approximate integration over the other dimension (that is, a finite sum over
100 intervals defined by the grid). Similarly, mutual information of a gene
pair can be computed via approximate integration over the region [-0.1,
1.1]×[-0.1,1.1] (that is, a finite sum over 100×100 squares defined by the
grid).

You can run your program from the command line as follows:

CalcMI.py –-dataset=<dataset> --str=kernel –-out=<out>

4,5 See https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.stats.gaussian_kde.html for
examples, including np.mgrid syntax. The integration will also be discussed on Piazza.

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Anthony Gitter Due: Thu, Mar 8, 2018 11:59 PM

5/9

1D: Plot the receiver operating characteristic (ROC) curve
Complete another program plot.py to plot the ROC curve6 for the output of
CalcMI.py. The gold standard edges, that is, the edges in the true gene-
gene network, are tabulated in a file called network.txt as two columns.
Each line represents an undirected edge between two different genes. The
genes in an edge are always listed with the smaller index first. Code for
generating the plot and computing the area under the ROC curve (AUROC)
is provided. You task is to add code for calculating the points on the curve.

You can run your program from the command line as follows:

plot.py –-MI=<MI> --gold=<gold_network> --name=<name>

where

 <MI> is the path of the output file from CalcMI.py, formatted and sorted
as in 1A

 <gold_network> is the gold standard network file for calculating TPR
and FPR.

 <name> is the name for your plot image. plot.py will automatically
append .png so only provide a name without the file type extension.

1E: Evaluate your predictions
After you compute the mutual information, plot the ROC curves and
calculate the AUROC scores for the three following scenarios:

bin_num = 7 str = uniform

bin_num = 9 str = density

 str = kernel

Include the mutual information output files and plots in your handin
directory and the AUROC scores in your solution PDF. Which combination
gave the best AUROC?7

6 The ROC curve is defined in the assigned reading Lever et al. (2016). More detailed instructions for
computing it are on slide 24 of the CS 760 slides http://pages.cs.wisc.edu/~dpage/cs760/evaluating.pdf
7 Note that in a real research problem it would be improper to select the hyperparameters (the number of
bins and binning strategy) based on the AUROC on the gold standard network. Also note that AUROC is
not actually an appropriate metric for this task because the gold standard has few positive edges.

http://pages.cs.wisc.edu/~dpage/cs760/evaluating.pdf

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Anthony Gitter Due: Thu, Mar 8, 2018 11:59 PM

6/9

Input files, example output files, and template Python files can be
downloaded from https://www.biostat.wisc.edu/bmi776/hw/hw2_files.zip

Part 2: Gibbs sampling
Consider a fictitious cellular signaling cascade in the form of a binary tree
with 15 nodes.

Each node 𝒊 represents a gene 𝑿𝒊 with two possible values, 1 for on and -1
for off. Let 𝑹 be the root node (that is, gene 𝑿𝟏) and 𝑺 be the right-most
leaf node (that is, gene 𝑿𝟏𝟓). The network is represented by the following
probabilistic model:

𝑃(𝑋1, 𝑋2, … , 𝑋14, 𝑋15) =
1

𝑍
∏ 𝜓(𝑋𝑖 , 𝑋𝑗)

(𝑖,𝑗)

where (𝑖, 𝑗)’s are pairs of directly connected nodes, 𝜓(𝑋𝑖 , 𝑋𝑗)=𝑒𝑋𝑖𝑋𝑗 is called

a potential function, and Z is the normalization factor given by

𝑍 = ∑ ∏ 𝜓(𝑋𝑖 , 𝑋𝑗)

(𝑖,𝑗)𝑋1,𝑋2,…,𝑋14,𝑋15

where the sum is over all possible configurations. This is an instance of a
Markov random field (a.k.a. undirected graphical model).

2A: Probabilities in the Markov random field
Answer the following questions in your solution PDF:

 How many possible configurations are there in this network?

 What are the most probable and the least probable configurations?

 Is it true that 𝑃(𝑅 = 1|𝑆 = 1)= 𝑃(𝑆 = 1|𝑅 = 1)? Show your work.

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Anthony Gitter Due: Thu, Mar 8, 2018 11:59 PM

7/9

2B: Gibbs sampling in the Markov random field
Next, write a Gibbs sampler, gibbs.py, to estimate 𝑃(𝑅 = 1|𝑆 = 1). This
Python script does not take any input file and outputs the estimated
probability 𝑃(𝑅 = 1|𝑆 = 1) to the screen.

Start sampling from the configuration where all 𝑿𝒊 except 𝑆 are set to -1,
and 𝑆 is set to 1. Iteratively update nodes with one of the following
strategies: (a) traverse the tree by stepping through the levels in top-down
order, and scan through the nodes within each level from left to right, or (b)
randomly pick a node at each iteration.

In sampling-based inference, we typically discard the initial samples during
a burn-in period. Discard the first 104 samples your Gibbs sampler

generates. Estimate 𝑃(𝑅 = 1|𝑆 = 1) using the next 105 samples. Run your
sampler three times and report your three estimated 𝑃(𝑅 = 1|𝑆 = 1) values
in your solution PDF.

If you want to check whether your Gibbs sampler is correct, you can also
write code that computes the exact probability 𝑃(𝑅 = 1|𝑆 = 1) by
enumerating all possible configurations. No code needs to be submitted for
this optional sanity check.

Part 3: Calculating q-values
You will manually calculate q-values from a p-value distribution.

3A: Estimating λ
First, use the histogram of the p-value distribution below to estimate λ
visually as in Storey and Tibshirani 2003. The distribution contains p-
values for 20000 features. Estimate λ to the nearest 0.1 and report the
value you estimated.

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Anthony Gitter Due: Thu, Mar 8, 2018 11:59 PM

8/9

3B: Estimating)(ˆ

0

Use the table below to estimate)(ˆ
0 for the value of λ that you selected.

Report the 0̂ you estimated rounded to two decimal places.

λ }1 ;{# mipi

0.0 20000

0.1 15427

0.2 12893

0.3 11382

0.4 9834

0.5 8466

0.6 7030

0.7 5259

0.8 3484

0.9 1714

3C: Calculating q-values
Although 20000 features have been tested, only the top 10 features ranked
by p-value are listed below:

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #2
Prof. Anthony Gitter Due: Thu, Mar 8, 2018 11:59 PM

9/9

Rank p-value

1 0.000003

2 0.000007

3 0.000013

4 0.000024

5 0.000028

6 0.000033

7 0.000046

8 0.000055

9 0.000096

10 0.000099

Calculate the q-value for these 10 features rounded to three decimal places.
You may assume that the q-values for the remaining features not shown in
the list above do not affect the q-values of these 10 features.

