
University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Anthony Gitter Due: Thu, Apr 12, 2018, 11:59 PM

1/8

Assignment Goals

 Gain a deeper understanding of convolutional neural networks for
regulatory genomics

 Resolve ambiguity in RNA-Seq quantification

 Use Gaussian processes to solve problems with temporal data

Instructions

 To submit your assignment, log in to the biostat server
mi1.biostat.wisc.edu or mi2.biostat.wisc.edu using your biostat
username and password.

 Copy all relevant files to the directory
/u/medinfo/handin/bmi776/hw3/<USERNAME> where <USERNAME> is your
biostat username. Submit all of your DragoNN output files, your code
for Part 1C, and any code or spreadsheets you created for Part 2. Do
not run DragoNN on adhara.biostat.wisc.edu.

 Compile all of your written answers in a single file and submit as
solution.pdf.

 Write the number of late days you used at the top of solution.pdf.

 Show your work for partial credit.

Part 1: Deep RegulAtory GenOmic Neural Networks (DragoNN)
We will use the DragoNN Python package1 to explore convolutional
networks for regulatory genomics. DragoNN can create DeepSEA-like
networks but is more user-friendly, makes it easier to test different network
architectures, implements network interpretation strategies, and simulates
DNA sequence training data for user-specified cis-regulatory modules.

The package has many dependencies, include old versions of other Python
packages and unpublished packages in GitHub repositories. We will
provide minimal support for installing it on your own machine and instead
request that you perform all of your testing on mi1.biostat.wisc.edu or
mi2.biostat.wisc.edu. Do not wait until the day or two before the
homework due date to conduct your tests because the server load will
make network training slow.

1 http://kundajelab.github.io/dragonn/index.html

http://kundajelab.github.io/dragonn/index.html

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Anthony Gitter Due: Thu, Apr 12, 2018, 11:59 PM

2/8

To run DragoNN on the biostat servers, first make sure you have the BMI
776 Python installation set as the default as described in HW0. To confirm
this, the command:

type -a python

should show

python is /u/medinfo/bmi776-miniconda3/bin/python

in the first line of the output.

Once you are using the BMI 776 Python environment, switch to the special
HW3 conda environment with:

source activate hw3

This environment has the DragoNN package installed. Test that DragoNN
is available with:

dragonn –h

For the following exercises, copy the HW3 sequence data and interpret.py
to your handin directory. Run everything within your handin directory and
leave the output files there. Specific questions you should answered are
bolded.

1A: Training convolutional networks
First you will train a convolutional neural network on data from a simulated
ChIP-Seq experiment. You have been provided a FASTA formatted file of
5000 DNA sequences bound by some regulatory proteins,
positive_train.fa, and a negative set of 5000 unbound sequences,
negative_train.fa. Use the following DragoNN command to train a 1 layer
network with a 5 hidden units (filters) and a convolutional window of 15
base pairs:

dragonn train --pos-sequences positive_train.fa --neg-sequences

negative_train.fa --prefix training_1_layer --num-filters 5 --conv-

width 15

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Anthony Gitter Due: Thu, Apr 12, 2018, 11:59 PM

3/8

This trains the neural network and saves the model architecture and
learned weights to training_1_layer.arch.json and
training_1_layer.weights.h5. DragoNN splits the input data into a training
and validation set and reports several performance metrics at each epoch
(iteration) of training.

What are the training auPRC (area under the precision recall curve)
and validation auPRC at epoch 1?

What are the training auPRC and validation auPRC at the final epoch?

The 1 layer network is an extremely simple neural network. We can train a
more complex network by adding more filters and convolutional width
arguments to the dragonn train command. Try a 2 layer network with 15
filters per layer and a window size of 15 base pairs:

dragonn train --pos-sequences positive_train.fa --neg-sequences

negative_train.fa --prefix training_2_layer --num-filters 15 15 --

conv-width 15 15

What are the training and validation auPRC at the first and last
epochs?

Why is the 2 layer network’s performance better than the simple 1
layer network?

DragoNN supports other training strategies and network architectures. The
command:

dragonn train -h

shows some of other options. --pool-width changes the size of the pooling
layer. --L1 and --dropout are different regularization strategies for learning
the weights. --num-filters and --conv-width can also be extended to three
or more layers as long as you provide the same number of integer
arguments to both of them. However, we will not use these other features.

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Anthony Gitter Due: Thu, Apr 12, 2018, 11:59 PM

4/8

1B: Using and interpreting trained convolutional networks
You will now inspect and interpret the 2 layer convolutional neural network
you trained above. Use the command:

python interpret.py --pos-sequences positive_test.fa --neg-sequences

negative_test.fa --arch-file training_2_layer.arch.json --weights-file

training_2_layer.weights.h5

This will load the trained network from the training_2_layer.arch.json and

training_2_layer.weights.h5 files, load positive and negative test
sequences, predict the probability that the test sequences are bound (i.e.,
in the positive class), and visualize the trained network.

Examine the output file training_2_layer_architecture.png. This shows a
graphical representation of the layers of the neural network and their sizes.

What do the input and output dimensions of the first Convolution2D
layer correspond to (ignore the Nones and 1s)? Hint: If it is not
obvious, try training different networks with different values of --num-
filters and --conv-width to see how these dimensions change.
What do the input and output dimensions of the Dense layer
correspond do? Hint: A Dense layer in Keras, the framework
DragoNN uses, is what DeepSEA refers to as a fully connected layer.

The probabilities that the test sequences are bound by the transcription
factors are printed to the screen for the positive and negative test
sequences. Suppose we predict that all sequences with P(bound) ≥ 0.5
are bound (positive) and all others are not bound (negative).

How many true positives, false positives, false negatives, and true
negatives are predicted?

interpret.py also visualizes the true motifs that were used to generate the
positive training and test data. Examine these motifs in the output files
motif1.png and motif2.png. The output file
training_2_layer_convolutional_filters.png visualizes the filters learned in
the first convolutional layer, that is, the weights for the hidden units in this
layer.

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Anthony Gitter Due: Thu, Apr 12, 2018, 11:59 PM

5/8

Do any of the filters resemble the true motifs? In a multi-layer
network, why do the first layer filters not need to learn motifs to get
good predictive performance?

DeepLIFT2 provides an improved way to interpret convolutional neural
networks versus visualizing the filters. DeepLIFT computes a score for
each input feature. Examine the DeepLIFT plots for each positive test
sequence in the subdirectory training_2_layer_deeplift_positive. The top

panel shows the summarized score at each position in the input sequence.
The gray region is zoomed and shown in the bottom panel with nucleotide-
specific scores.

Do the DeepLIFT scores look more or less similar to the true motifs
than the convolutional filter visualizations? Do they represent both
true motifs equally well?

1C: Implementing a forward pass

Assume that a network has been trained using DragoNN and the network
weights are available. The network includes 2 convolutional layers, a max-
pooling layer, and a fully connected layer in sequence. Each convolutional
layer contains 5 filters, has window size and stride size equal to 15 and 1,
respectively, and uses ReLU as its activation function. The max-pooling
layer has window size and stride size both equal to 35. The fully connected
layer uses the sigmoid function as its activation function.

Write a program forward_pass.py that reads in positive_test.fa,
negative_test.fa, and weights files and outputs the probability of each test
sequence being bound. Transform the sequences using one-hot encoding.
For example, GAATTC is encoded as

A 0 1 1 0 0 0

C 0 0 0 0 0 1

G 1 0 0 0 0 0

T 0 0 0 1 1 0

2 https://arxiv.org/abs/1704.02685

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Anthony Gitter Due: Thu, Apr 12, 2018, 11:59 PM

6/8

The weights files with the prefix conv1 are for the first convolutional layer.
There is one file for each channel (filter) and another for the bias terms,
which has the first filter’s bias parameter in the first row. Files with the
prefix conv2 are for the second convolutional layer, and the dense files are
for the final fully connected layer. The first 13 weights of dense_wgts.txt
are for the first filter in the second convolutional layer, the next 13 weights
are for the second filter, and so on.

You are strongly recommended to compute the output at each layer using
matrix operations. You may find NumPy functions matmul, reshape, vstack
and hstack helpful. No padding is needed. At the max-pooling layer,
discard as few positions at the tail of the input as possible so that the
remaining input size is divisible by the window size. Do not forget the bias
terms.

Your output will not match the DragoNN output exactly. We will discuss the
output predictions from our reference implementation on positive_test.fa
and negative_test.fa on Piazza so you can check your output.

Input files and Python files can be downloaded from
https://www.biostat.wisc.edu/bmi776/hw/hw3_files.zip

Part 2: RNA-Seq Rescue Algorithm
The full RSEM algorithm is too complicated to execute manually, but we
can use the RNA-Seq rescue method presented in class to approximate
one iteration of expectation maximization. The bipartite graph (Figure 1)
contains two types of nodes: transcripts and read groups. The transcript
nodes contain a transcript id and the transcript length in base pairs (bp).
The read nodes contain the read counts for a group of reads that all align to
the same transcripts. Transcript-read group edges designate the
transcripts to which each read group aligns.

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Anthony Gitter Due: Thu, Apr 12, 2018, 11:59 PM

7/8

Figure 1: RNA-Seq bipartite graph

2A: Estimating relative abundance
Use the rescue method to calculate the relative abundance for the five
transcripts to three decimal places. Show your work for partial credit.

2B: Estimating absolute abundance
Transcript X is a RNA spike-in. 1000 copies of transcript X were mixed into
the experimental sample when preparing the sample for RNA-Seq,
meaning its absolute abundance is 1000. Use the relative abundances you
calculated above to calculate the absolute abundances for the other four
transcripts, rounded to the nearest whole number. Show your work for
partial credit.

Hint: Review the “Issues with relative abundance measures” slide from the
RNA-Seq lecture. Given the relative abundances for all six genes and the
absolute abundance of Gene 6, you can derive the absolute abundances of
Genes 1 through 5.

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #3
Prof. Anthony Gitter Due: Thu, Apr 12, 2018, 11:59 PM

8/8

Part 3: Gaussian processes for time series data
In a biological time series study, gene expression levels are collected at
multiple time points. If the goal is to learn how cells react to an external
stimulation, we can measure gene expression at 0 min (immediately before
the stimulation) and at 𝑡𝑖 min after stimulation for 𝑖 ∈ {1,…𝑇}. Gaussian
processes with a squared exponential are well-suited for modeling
biological data collected over time. The posterior mean is smooth over
time, and the confidence intervals track uncertainty between the measured
time points.

Suppose we are studying heat shock, a sudden temperature increase, and
want a statistical test to assess which genes are differentially expressed
over time. Specifically, we perform RNA-Seq on cells in normal growth
conditions at 0, 5, 10, 15, 30, 60, and 120 min. We perform RNA-Seq at
the same time points on cells that are heat shocked at 0 min (Figure 2).

Describe a Gaussian process-based test that can be applied separately to
each gene to assess whether its temporal expression profile in the normal
growth condition differs from the profile under heat shock.

Hint: Recall that we can optimize the squared exponential kernel
hyperparameters to maximize the posterior likelihood of some observed
data and compute that posterior likelihood.

Figure 2: Examples of one gene that is differentially expressed and one

that is not

