
University of Wisconsin-Madison Spring 2018 
BMI/CS 776: Advanced Bioinformatics Homework #3 
Prof. Anthony Gitter Due: Thu, Apr 12, 2018, 11:59 PM 

 

1/8 

Assignment Goals 

 Gain a deeper understanding of convolutional neural networks for 
regulatory genomics 

 Resolve ambiguity in RNA-Seq quantification 

 Use Gaussian processes to solve problems with temporal data 
 
Instructions 

 To submit your assignment, log in to the biostat server 
mi1.biostat.wisc.edu or mi2.biostat.wisc.edu using your biostat 
username and password. 

 Copy all relevant files to the directory 
/u/medinfo/handin/bmi776/hw3/<USERNAME> where <USERNAME> is your 
biostat username.  Submit all of your DragoNN output files, your code 
for Part 1C, and any code or spreadsheets you created for Part 2.  Do 
not run DragoNN on adhara.biostat.wisc.edu. 

 Compile all of your written answers in a single file and submit as 
solution.pdf. 

 Write the number of late days you used at the top of solution.pdf. 

 Show your work for partial credit. 
 
Part 1: Deep RegulAtory GenOmic Neural Networks (DragoNN) 
We will use the DragoNN Python package1 to explore convolutional 
networks for regulatory genomics.  DragoNN can create DeepSEA-like 
networks but is more user-friendly, makes it easier to test different network 
architectures, implements network interpretation strategies, and simulates 
DNA sequence training data for user-specified cis-regulatory modules. 
 
The package has many dependencies, include old versions of other Python 
packages and unpublished packages in GitHub repositories.  We will 
provide minimal support for installing it on your own machine and instead 
request that you perform all of your testing on mi1.biostat.wisc.edu or 
mi2.biostat.wisc.edu.  Do not wait until the day or two before the 
homework due date to conduct your tests because the server load will 
make network training slow. 
 

                                                           
1 http://kundajelab.github.io/dragonn/index.html 

http://kundajelab.github.io/dragonn/index.html
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To run DragoNN on the biostat servers, first make sure you have the BMI 
776 Python installation set as the default as described in HW0.  To confirm 
this, the command: 
 
type -a python 

 
should show 
 
python is /u/medinfo/bmi776-miniconda3/bin/python 

 
in the first line of the output. 
 
Once you are using the BMI 776 Python environment, switch to the special 
HW3 conda environment with: 
 
source activate hw3 

 
This environment has the DragoNN package installed.  Test that DragoNN 
is available with: 
 
dragonn –h 

 
For the following exercises, copy the HW3 sequence data and interpret.py 
to your handin directory.  Run everything within your handin directory and 
leave the output files there.  Specific questions you should answered are 
bolded. 
 
1A: Training convolutional networks 
First you will train a convolutional neural network on data from a simulated 
ChIP-Seq experiment.  You have been provided a FASTA formatted file of 
5000 DNA sequences bound by some regulatory proteins, 
positive_train.fa, and a negative set of 5000 unbound sequences, 
negative_train.fa.  Use the following DragoNN command to train a 1 layer 
network with a 5 hidden units (filters) and a convolutional window of 15 
base pairs: 
 
dragonn train --pos-sequences positive_train.fa --neg-sequences 

negative_train.fa --prefix training_1_layer --num-filters 5 --conv-

width 15 
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This trains the neural network and saves the model architecture and 
learned weights to training_1_layer.arch.json and 
training_1_layer.weights.h5.  DragoNN splits the input data into a training 
and validation set and reports several performance metrics at each epoch 
(iteration) of training. 
 
What are the training auPRC (area under the precision recall curve) 
and validation auPRC at epoch 1? 
 
What are the training auPRC and validation auPRC at the final epoch? 
 
The 1 layer network is an extremely simple neural network.  We can train a 
more complex network by adding more filters and convolutional width 
arguments to the dragonn train command.  Try a 2 layer network with 15 
filters per layer and a window size of 15 base pairs: 
 
dragonn train --pos-sequences positive_train.fa --neg-sequences 

negative_train.fa --prefix training_2_layer --num-filters 15 15 --

conv-width 15 15 

 
What are the training and validation auPRC at the first and last 
epochs? 
 
Why is the 2 layer network’s performance better than the simple 1 
layer network? 
 
DragoNN supports other training strategies and network architectures.  The 
command: 
 
dragonn train -h 

 
shows some of other options.  --pool-width changes the size of the pooling 
layer.  --L1 and --dropout are different regularization strategies for learning 
the weights.  --num-filters and --conv-width can also be extended to three 
or more layers as long as you provide the same number of integer 
arguments to both of them.  However, we will not use these other features. 
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1B: Using and interpreting trained convolutional networks 
You will now inspect and interpret the 2 layer convolutional neural network 
you trained above.  Use the command: 
 
python interpret.py --pos-sequences positive_test.fa --neg-sequences 

negative_test.fa --arch-file training_2_layer.arch.json --weights-file 

training_2_layer.weights.h5 

 
This will load the trained network from the training_2_layer.arch.json and 

training_2_layer.weights.h5 files, load positive and negative test 
sequences, predict the probability that the test sequences are bound (i.e., 
in the positive class), and visualize the trained network. 
 
Examine the output file training_2_layer_architecture.png.  This shows a 
graphical representation of the layers of the neural network and their sizes. 
 
What do the input and output dimensions of the first Convolution2D 
layer correspond to (ignore the Nones and 1s)?  Hint: If it is not 
obvious, try training different networks with different values of --num-
filters and --conv-width to see how these dimensions change. 
What do the input and output dimensions of the Dense layer 
correspond do?  Hint: A Dense layer in Keras, the framework 
DragoNN uses, is what DeepSEA refers to as a fully connected layer. 
 
The probabilities that the test sequences are bound by the transcription 
factors are printed to the screen for the positive and negative test 
sequences.  Suppose we predict that all sequences with P(bound) ≥ 0.5 
are bound (positive) and all others are not bound (negative). 
 
How many true positives, false positives, false negatives, and true 
negatives are predicted? 
 
interpret.py also visualizes the true motifs that were used to generate the 
positive training and test data.  Examine these motifs in the output files 
motif1.png and motif2.png.  The output file 
training_2_layer_convolutional_filters.png visualizes the filters learned in 
the first convolutional layer, that is, the weights for the hidden units in this 
layer.  
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Do any of the filters resemble the true motifs?  In a multi-layer 
network, why do the first layer filters not need to learn motifs to get 
good predictive performance? 
 
DeepLIFT2 provides an improved way to interpret convolutional neural 
networks versus visualizing the filters.  DeepLIFT computes a score for 
each input feature.  Examine the DeepLIFT plots for each positive test 
sequence in the subdirectory training_2_layer_deeplift_positive.  The top 

panel shows the summarized score at each position in the input sequence.  
The gray region is zoomed and shown in the bottom panel with nucleotide-
specific scores. 
 
Do the DeepLIFT scores look more or less similar to the true motifs 
than the convolutional filter visualizations?  Do they represent both 
true motifs equally well? 
 
1C: Implementing a forward pass 
 
Assume that a network has been trained using DragoNN and the network 
weights are available.  The network includes 2 convolutional layers, a max-
pooling layer, and a fully connected layer in sequence.  Each convolutional 
layer contains 5 filters, has window size and stride size equal to 15 and 1, 
respectively, and uses ReLU as its activation function.  The max-pooling 
layer has window size and stride size both equal to 35.  The fully connected 
layer uses the sigmoid function as its activation function.  
 
Write a program forward_pass.py that reads in positive_test.fa, 
negative_test.fa, and weights files and outputs the probability of each test 
sequence being bound.  Transform the sequences using one-hot encoding.  
For example, GAATTC is encoded as 
 

A 0 1 1 0 0 0 

C 0 0 0 0 0 1 

G 1 0 0 0 0 0 

T 0 0 0 1 1 0 

 

                                                           
2 https://arxiv.org/abs/1704.02685 
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The weights files with the prefix conv1 are for the first convolutional layer.  
There is one file for each channel (filter) and another for the bias terms, 
which has the first filter’s bias parameter in the first row.  Files with the 
prefix conv2 are for the second convolutional layer, and the dense files are 
for the final fully connected layer.  The first 13 weights of dense_wgts.txt 
are for the first filter in the second convolutional layer, the next 13 weights 
are for the second filter, and so on. 
 
You are strongly recommended to compute the output at each layer using 
matrix operations.  You may find NumPy functions matmul, reshape, vstack 
and hstack helpful.  No padding is needed.  At the max-pooling layer, 
discard as few positions at the tail of the input as possible so that the 
remaining input size is divisible by the window size.  Do not forget the bias 
terms. 
 
Your output will not match the DragoNN output exactly.  We will discuss the 
output predictions from our reference implementation on positive_test.fa 
and negative_test.fa on Piazza so you can check your output. 
 
Input files and Python files can be downloaded from 
https://www.biostat.wisc.edu/bmi776/hw/hw3_files.zip 
 
Part 2: RNA-Seq Rescue Algorithm 
The full RSEM algorithm is too complicated to execute manually, but we 
can use the RNA-Seq rescue method presented in class to approximate 
one iteration of expectation maximization.  The bipartite graph (Figure 1) 
contains two types of nodes: transcripts and read groups.  The transcript 
nodes contain a transcript id and the transcript length in base pairs (bp).  
The read nodes contain the read counts for a group of reads that all align to 
the same transcripts.  Transcript-read group edges designate the 
transcripts to which each read group aligns. 
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Figure 1: RNA-Seq bipartite graph 

 
2A: Estimating relative abundance 
Use the rescue method to calculate the relative abundance for the five 
transcripts to three decimal places.  Show your work for partial credit. 
 
2B: Estimating absolute abundance 
Transcript X is a RNA spike-in.  1000 copies of transcript X were mixed into 
the experimental sample when preparing the sample for RNA-Seq, 
meaning its absolute abundance is 1000.  Use the relative abundances you 
calculated above to calculate the absolute abundances for the other four 
transcripts, rounded to the nearest whole number.  Show your work for 
partial credit. 
 
Hint: Review the “Issues with relative abundance measures” slide from the 
RNA-Seq lecture.  Given the relative abundances for all six genes and the 
absolute abundance of Gene 6, you can derive the absolute abundances of 
Genes 1 through 5. 
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Part 3: Gaussian processes for time series data  
In a biological time series study, gene expression levels are collected at 
multiple time points.  If the goal is to learn how cells react to an external 
stimulation, we can measure gene expression at 0 min (immediately before 
the stimulation) and at 𝑡𝑖 min after stimulation for 𝑖 ∈ {1,…𝑇}.  Gaussian 
processes with a squared exponential are well-suited for modeling 
biological data collected over time.  The posterior mean is smooth over 
time, and the confidence intervals track uncertainty between the measured 
time points. 
 
Suppose we are studying heat shock, a sudden temperature increase, and 
want a statistical test to assess which genes are differentially expressed 
over time.  Specifically, we perform RNA-Seq on cells in normal growth 
conditions at 0, 5, 10, 15, 30, 60, and 120 min.  We perform RNA-Seq at 
the same time points on cells that are heat shocked at 0 min (Figure 2). 
 
Describe a Gaussian process-based test that can be applied separately to 
each gene to assess whether its temporal expression profile in the normal 
growth condition differs from the profile under heat shock. 
 
Hint: Recall that we can optimize the squared exponential kernel 
hyperparameters to maximize the posterior likelihood of some observed 
data and compute that posterior likelihood. 
 

 
Figure 2: Examples of one gene that is differentially expressed and one 

that is not 


