
University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Anthony Gitter Due: Thu, May 3, 2018, 11:59 PM

1/7

Assignment Goals

 Match observed and theoretical spectra from mass spectrometry

 Compare and contrast algorithms for finding paths in networks

 Gain experience with an interpolated Markov model

Instructions

 To submit your assignment, log in to the biostat server
mi1.biostat.wisc.edu or mi2.biostat.wisc.edu using your biostat
username and password.

 Copy all relevant files to the directory
/u/medinfo/handin/bmi776/hw4/<USERNAME> where <USERNAME> is your biostat
username. Submit all of your Python source code and test that it
runs on mi1.biostat.wisc.edu or mi2.biostat.wisc.edu. Do not test your
code on adhara.biostat.wisc.edu.

 Compile all of your written answers in a single file and submit as
solution.pdf.

 Write the number of late days you used at the top of solution.pdf.

 For the written portions, show your work for partial credit.

Part 1: Peptide-spectra matching

1A: Generating simplified theoretical spectra
Write a program spectra_generator.py that takes as input an amino acid
mass table* and a set of peptide sequences and outputs a theoretical
spectra library. Given a peptide sequence, the program should determine
the mass-to-charge ratio (m/z) of all distinct type-b and -y ions and assign
appropriate relative magnitude to each ion following the rules below.

(a) Assume all ions carry a single positive charge.
(b) Round a calculated m/z value to its nearest integer.
(c) Values equal to the m/z of the ions have a magnitude of 50.
(d) Values equal to ±1 of the m/z of the ions have a magnitude of 25†.
(e) If an m/z value can be assigned two magnitudes, pick the larger one.

* From http://rosalind.info/glossary/monoisotopic-mass-table, which also has other useful references for

bioinformatics tasks in mass spectrometry.
† This and other implementation details come from https://link.springer.com/content/pdf/10.1016%2F1044-

0305%2894%2980016-2.pdf

http://rosalind.info/glossary/monoisotopic-mass-table/

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Anthony Gitter Due: Thu, May 3, 2018, 11:59 PM

2/7

You can use a simplified formula that ignores water molecules to compute
the m/z for an ion:

𝑚/𝑧 =
𝑐ℎ𝑎𝑟𝑔𝑒 + ∑ 𝑚𝑎𝑠𝑠(𝑎)𝑎∈𝑖𝑜𝑛

𝑐ℎ𝑎𝑟𝑔𝑒
= 1 + ∑ 𝑚𝑎𝑠𝑠(𝑎)

𝑎∈𝑖𝑜𝑛

The 𝑐ℎ𝑎𝑟𝑔𝑒 is always 1 per the assumption above, and 𝑚𝑎𝑠𝑠(𝑎) is the
monoisotopic mass for amino acid 𝑎 in the ion from mass_table.txt. For
example, the peptide AYDN can be fragmented into A, AY, AYD, YDN, DN and N.
Its theoretical spectrum should be printed in the following format

AYDN

71 25

72 50

73 25

114 25

115 50

116 25

…

The first row is the peptide sequence. For all following rows, the first
column has the m/z values and the second column has their corresponding
magnitudes. The m/z values are sorted in increasing order. The two
columns are separated by a tab. Insert an empty line to separate two
spectra.

Your program should be runnable from the command line as follows:

spectra_generator.py –-mass_table=<table> --peptides=<peptides> --out=<out>

You can test your program using the input file peptides.txt.

1B: Computing cross-correlation scores
Given an experimental spectrum, your task is to identify the best match in
the theoretical spectra library. Write a program xcorr.py that takes as input
an experimental spectrum and the theoretical spectra library generated by
spectra_generator.py run on mass_table.txt and peptides.txt and outputs a
ranked list of cross-correlation scores.

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Anthony Gitter Due: Thu, May 3, 2018, 11:59 PM

3/7

The experimental spectra spectrum1.txt, spectrum2.txt and spectrum3.txt
have been preprocessed so that each of them only includes the relative
intensities for the 200 most abundant ions. The first column has the m/z
values and the second column has their corresponding relative intensities.
For the experimental and theoretical spectra, assume an intensity of 0 for
any m/z value that is not listed. Compute the cross-correlation score
between the experimental spectrum and each theoretical spectrum over the
range [1, max], where max is the maximum m/z value over all experimental
and theoretical spectra. The offset 𝜏 is varied over [-10, 10].

𝑥𝑐𝑜𝑟𝑟 = 𝑅0 − (∑ 𝑅𝜏

10

𝜏=−10

) 21⁄

𝑅𝜏 = ∑ 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙[𝑖] ∙ 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙[𝑖 + 𝜏]

𝑚𝑎𝑥

𝑖=1

Normalize the xcorr scores to 1 by dividing them by the maximum score,
rank them in decreasing order, and round them to three decimal places. In
your output file, the first column has the normalized scores, and the second
column has their corresponding peptide sequences. The two columns are
separated by a tab.

You can run your program from the command line as follows:

xcorr.py –-query=<spectrum> --library=<library> --out=<out>

You can use the example output files xcorr_out1.txt, xcorr_out2.txt, and
xcorr_out3.txt to check the output of your xcorr.py implementation for the
respective experimental spectra.

Part 2: Source-target paths in networks
You will use the Python networkx package (version 1.11 required) to
compare and contrast two algorithms for finding source-target paths in a
network. One optimizes the min cost flow and is similar to (but not identical
to) ResponseNet. The other finds the k shortest weighted paths.

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Anthony Gitter Due: Thu, May 3, 2018, 11:59 PM

4/7

In both cases, you are given an undirected network where each line in the
input file lists a pair of nodes followed by their weight. The weight is the
cost of transmitting flow in the flow problem‡. The networkx flow algorithms
require directed graphs, so we represent an undirected edge as a pair of
directed edges with the same weight.
In addition to the network, you are provided with a list of source nodes and
target nodes. These sources and targets will be connected to an artificial
source and an artificial target, as in ResponseNet. The objective is then to
find connections from the artificial source to the artificial target.

You are provided a mostly complete implementation find_paths.py that you
will finish and test below. This file contains the flow-based and shortest
paths-based source-target path algorithms, and the algorithm is selected
based on the input parameters. The program is callable from the command
line as follows:

python find_paths.py --edges_file=<edges> --sources_file=<sources>

--targets_file=<targets> --flow=<flow> --output=<output>

or

python find_paths.py --edges_file=<edges> --sources_file=<sources>

--targets_file=<targets> --k=<k> --output=<output>

where

 <edges> is a text file listing weighted undirected edges one per line

 <sources> is a text file listing source nodes one per line

 <targets> is a text file listing target nodes one per line

 <output> is a the filename for the output

 <flow> is a positive number specifying the amount of flow to send from
the artificial source to the artificial target

 <k> is a positive integer specifying the number of shortest paths to
find

2A: Completing the path-finding implementations
Search for and complete the parts of the functions annotated with five
TODO comments in find_paths.py. The networkx documentation at

‡ Note that we must use integer-valued weights. The networkx network_simplex implementation

appears to not terminate in some cases when floating point weights are used, as noted in its source code.

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Anthony Gitter Due: Thu, May 3, 2018, 11:59 PM

5/7

https://networkx.github.io/documentation/networkx-1.11 will be useful for
learning how it represents the graph data structure and implements the
path finding algorithms. In particular, review:

 https://networkx.github.io/documentation/networkx-
1.11/tutorial/tutorial.html#directed-graphs

 https://networkx.github.io/documentation/networkx-
1.11/reference/algorithms.flow.html#capacity-scaling-minimum-cost-
flow

 https://networkx.github.io/documentation/networkx-
1.11/reference/algorithms.simple_paths.html

You can use the provided print_graph and the networkx draw function to
inspect the directed graph object that you load. The example input files
example_graph.txt, example_sources.txt, and example_targets.txt can be used
to test your code. When find_paths.py is run with --flow=3 you should obtain
example_paths_flow_file.txt or the equally good§
example_paths_alt_flow_file.txt. When it is run with --k=7 you should obtain
example_paths_shortest_file.txt.

2B: Test your implementation on a new network
Test find_paths.py on the input files test_graph.txt, test_sources.txt, and
test_targets.txt. Run find_paths.py with --flow=3 and store the results in a
file named test_paths_flow_file.txt that you should include in your handin
directory.

Then run find_paths.py with --k=8 and store the results in a file named
test_paths_shortest_file.txt that you should include in your handin
directory.

2C: Compare min cost flow and shortest paths
Based on your empirical testing of the two algorithms, their descriptions in
the networkx documentation, and any experiments you conduct on your
own, compare and contrast min cost flow (specifically the version we have

§ The flow algorithm is not completely deterministic and can break ties among equally good solutions that have the
same cost in different ways on different machines.

https://networkx.github.io/documentation/networkx-1.11
https://networkx.github.io/documentation/networkx-1.11/tutorial/tutorial.html#directed-graphs
https://networkx.github.io/documentation/networkx-1.11/tutorial/tutorial.html#directed-graphs
https://networkx.github.io/documentation/networkx-1.11/reference/algorithms.flow.html#capacity-scaling-minimum-cost-flow
https://networkx.github.io/documentation/networkx-1.11/reference/algorithms.flow.html#capacity-scaling-minimum-cost-flow
https://networkx.github.io/documentation/networkx-1.11/reference/algorithms.flow.html#capacity-scaling-minimum-cost-flow
https://networkx.github.io/documentation/networkx-1.11/reference/algorithms.simple_paths.html
https://networkx.github.io/documentation/networkx-1.11/reference/algorithms.simple_paths.html

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Anthony Gitter Due: Thu, May 3, 2018, 11:59 PM

6/7

implemented with unit capacity on all edges) and k shortest paths. What
are the unique advantages of each method?

Hint: Examining how the edge 2-5 and the edge 5-11 are used in the flow-
based and shortest path-based solutions in 2B will reveal some interesting
behavior. This should not constitute your entire answer but can help you
start to think about differences between the methods.

2D: Special cases of the algorithms
So far we have used infinite capacity on the edges incident to the artificial
source and artificial target and capacity of 1.0 on all real edges in the
network. Describe how to change the capacities such that the min cost
flow solution will return essentially the same solution as k shortest paths for
some value of k. What value of k that is relevant for this special case?

Part 3: Interpolated Markov models
We will use the interpolated Markov model approach from GLIMMER to
estimate the probability PIMM,3(A|TTA). For the sub-parts below, suppose we
have the following counts in our training data. Show your work for partial
credit.

TTAA 15 TAA 85 AA 450
TTAC 20 TAC 70 AC 220
TTAG 10 TAG 35 AG 180
TTAT 5 TAT 10 AT 50

Total 50 Total 200 Total 900

3A: χ2 test
In order to calculate the λ values, we must first perform the χ2 statistical test
to determine whether the distributions of the current character depend on
the order of the history. First, compute the χ2 test statistic, rounded to the
tenths place, comparing the 3rd order and 2nd order counts in the training
data. Then use the p-value table for a χ2 test with 3 degrees of freedom in
the provided chisquare_df3_pvalues.txt to lookup the p-value for this test
statistic and round to the thousandths place. Finally, compute d = 1 – p to
obtain the GLIMMER confidence score.

University of Wisconsin-Madison Spring 2018
BMI/CS 776: Advanced Bioinformatics Homework #4
Prof. Anthony Gitter Due: Thu, May 3, 2018, 11:59 PM

7/7

Repeat the χ2, p-value, and d calculations for the 2nd order and 1st order
comparison.

Recall that the χ2 test statistic for an n by m contingency table is defined as

𝜒2 =∑∑
(𝑂𝑖,𝑗 − 𝐸𝑖,𝑗)

2

𝐸𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

where 𝑂𝑖,𝑗 is the observed count in the contingency table and 𝐸𝑖,𝑗 is the

expected count

𝐸𝑖,𝑗 =
𝑅𝑖𝐶𝑗
𝑁

𝑅𝑖 is the sum of the entries in row i, 𝐶𝑗 is the sum of the entries in column j,

and 𝑁 is the sum of all entries in the contingency table. In this test there
are n = 4 rows for the nucleotides and m = 2 columns for the nth and
(n – 1)th order histories so there are 3 degrees of freedom.

3B: Calculating λ
Use the values of d calculated above, the training data counts, and the λ
definition from GLIMMER to calculate λ3(TTA), λ2(TA), and λ1(A).

3C: Interpolated Markov model probability
Use the λ values and the probabilities estimated from the training data
counts to compute PIMM,3(A|TTA).

