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Overview

• Biological question

– What is causing differential gene expression?

• Goal

– Find regulatory motifs in the DNA sequence

• Solution

– FIRE (Finding Informative Regulatory Elements)
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Goals for Lecture

Key concepts:

• Entropy

• Mutual information (MI)

• Motif logos

• Using MI to identify cis-regulatory module elements
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A Common Type of Question

Figure from Gasch et al., Mol. Biol. Cell, 2000

Experiments / Conditions
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What causes this set of yeast 

genes to be up-regulated in 

stress conditions?
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…accgcgctgaaaaaattttccgatgagtttagaagagtcaccaaaaaattttcatacagcctactggtgttctctgtgtgtgctaccactggctgtcatcatggttgta…

…caaaattattcaagaaaaaaagaaatgttacaatgaatgcaaaagatgggcgatgagataaaagcgagagataaaaatttttgagcttaaatgatctggcatgagcagt…

…gagctggaaaaaaaaaaaatttcaaaagaaaacgcgatgagcatactaatgctaaaaatttttgaggtataaagtaacgaattggggaaaggccatcaatatgaagtcg…

• Co-expressed genes are often controlled by specific 

configurations of binding sites

cis-Regulatory Modules (CRMs)

RNAP

RNAP

RNAP
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Information Theory Background

• Problem 

– Create a code to communicate information

• Example

– Need to communicate the manufacturer of each bike 
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Information Theory Background

• Four types of bikes

• Possible code

11
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01

00

• Expected number of bits we have to communicate:  
2 bits/bike

Trek

Specialized

Cervelo

Serotta

Type code
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Information Theory Background

• Can we do better?

• Yes, if the bike types aren’t equiprobable

• Optimal code uses       bits for event with 
probability
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Information Theory Background
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• Expected number of bits we have to communicate:  
1.75 bits/bike
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Entropy

• Entropy is a measure of uncertainty associated with a 
random variable

• Can be interpreted as the expected number of bits 
required to communicate the value of the variable
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How is entropy related to 

DNA sequences?
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Sequence Logos

• Typically represent a binding site

• Height of each character c is proportional to P(c)
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• Height of logo at a given position determined by decrease 

in entropy (from maximum possible)
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Mutual Information
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• Mutual information quantifies how much knowing the 
value of one variable tells about the value of another

entropy of M

entropy of M

conditioned on C
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FIRE
Elemento et al., Molecular Cell 2007

• Finding Informative 
Regulatory Elements 
(FIRE)

• Given a set of sequences 
grouped into clusters

• Find motifs, and 
relationships, that have 
high mutual information
with the clusters

• Applicable when 
sequences have 
continuous values instead 
of cluster labels
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Mutual Information in FIRE

• We can compute the mutual information between a motif 
and the clusters as follows
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m=0, 1 represent absence/presence of motif

c ranges over the cluster labels
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Finding Motifs in FIRE

• Motifs are represented by regular expressions; initially 
each motif is represented by a strict k-mer (e.g. 
TCCGTAC)

1. Test all k-mers (k=7 by default) to see which have 
significant mutual information with the cluster label

2. Filter k-mers using a significance test to obtain motif 
seeds

3. Generalize each motif seed

4. Filter motifs using a significance test

17



Key Step in Generalizing a Motif in FIRE

• Randomly pick a position in the motif

• Generalize in all ways consistent with current value at position

• Score each by computing mutual information

• Retain the best generalization

TCCGTAC

TCC[CG]TAC

TCC[AG]TAC TCC[GT]TAC

TCC[CGT]TACTCC[ACG]TAC

TCC[AGT]TAC

TCC[ACGT]TAC
18

A or G in 
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Generalizing a Motif in FIRE

given: k-mer, n

best  null

repeat n times

motif  k-mer

repeat

motif  GeneralizePosition(motif)    // shown on previous slide

until convergence (no improvement at any position)

if score(motif) > score(best)

best  motif

return: best
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Generalizing a Motif in FIRE: Example

Figure from Elemento et al. Molecular Cell 2007 20



Avoiding Redundant Motifs

• Different seeds could converge to similar motifs

• Use mutual information to test whether new motif is 
unique and contributes new information

TCCGTAC

TCC[CG]TAC

TCCCTAC

TCC[CG]TAC

r
MMI

MCMI
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Characterizing Predicted Motifs in FIRE

• Mutual information is also used to assess various 
properties of found motifs

– orientation bias

– position bias

– interaction with another motif
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Using MI to Determine Orientation Bias

);( CSI C  indicates cluster

S=1 indicates motif present on transcribed strand

S=0 otherwise (not present or not on transcribed strand)
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Also compute MI where S=1 

indicates motif present on 

complementary strand
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Using MI to Determine Position Bias
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Using MI to Determine Motif Interactions
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Using MI to Determine Motif Interactions

Yeast motif-motif interactions

White: positive association

Dark red: negative association

Blue box: DNA-DNA

Green box: DNA-RNA

Plus: spatial co-localization
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Discussion of FIRE

• FIRE

– mutual information used to identify motifs and 
relationships among them

– motif search is based on generalizing informative k-
mers

• Consider advantages and disadvantages of k-mers
versus PWMs

• In contrast to many motif-finding approaches, FIRE 
takes advantage of negative sequences

• FIRE returns all informative motifs found
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Mutual Information for Gene Networks

• Mutual information and conditional mutual information 
can also be useful for reconstructing biological networks

• Build gene-gene network where edges indicate high MI 
in genes’ expression levels

• Algorithm for the Reconstruction of Accurate Cellular 
Networks (ARACNE)
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ARACNE

29

Margolin et al. BMC Bioinformatics 2006

• Gaussian kernel estimator to estimate mutual 
information

– No binning or histograms

• Data processing inequality

– Prune indirect edges


