Interpolated Markov Models for Gene Finding

BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2018 Anthony Gitter gitter@biostat.wisc.edu

These slides, excluding third-party material, are licensed under <u>CC BY-NC 4.0</u> by Mark Craven, Colin Dewey, and Anthony Gitter

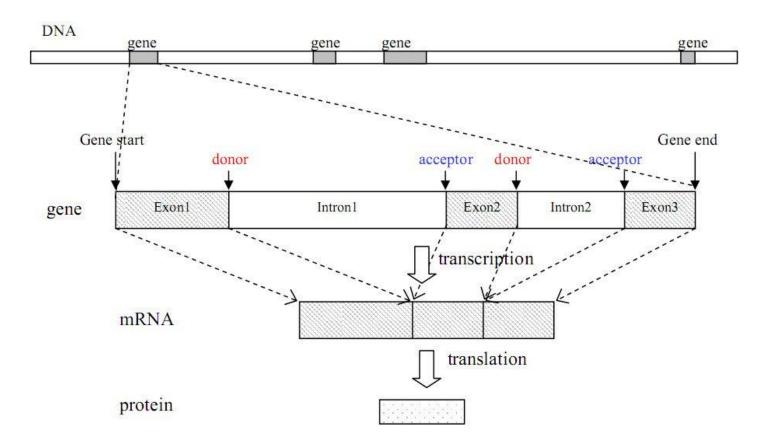
Goals for Lecture

Key concepts

- the gene-finding task
- the trade-off between potential predictive value and parameter uncertainty in choosing the order of a Markov model
- interpolated Markov models

The Gene Finding Task

Given: an uncharacterized DNA sequenceDo: locate the genes in the sequence, including the coordinates of individual *exons* and *introns*



Sources of Evidence for Gene Finding

- **Signals**: the sequence *signals* (e.g. splice junctions) involved in gene expression
- Content: statistical properties that distinguish protein-coding DNA from non-coding DNA
- **Conservation**: signal and content properties that are conserved across related sequences (e.g. orthologous regions of the mouse and human genome)

Gene Finding: Search by Content

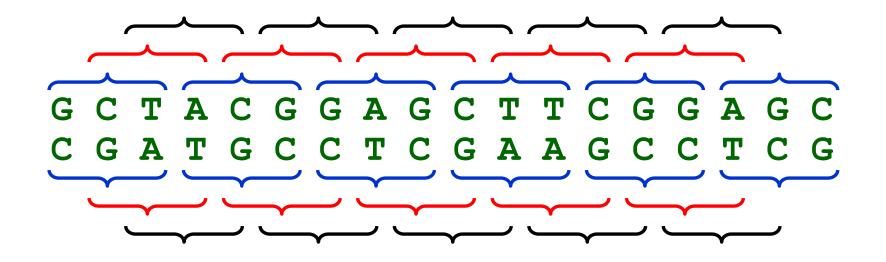
- Encoding a protein affects the statistical properties of a DNA sequence
 - some amino acids are used more frequently than others (Leu more prevalent than Trp)
 - different numbers of codons for different amino acids (Leu has 6, Trp has 1)
 - for a given amino acid, usually one codon is used more frequently than others
 - this is termed codon preference
 - these preferences vary by species

Codon Preference in E. Coli

AA	codon	/1000
Gly	GGG	1.89
Gly	GGA	0.44
Gly	GGU	52.99
Gly	GGC	34.55
Glu	GAG	15.68
Glu	GAA	57.20
Asp	GAU	21.63
Asp	GAC	43.26

Reading Frames

 A given sequence may encode a protein in any of the six reading frames



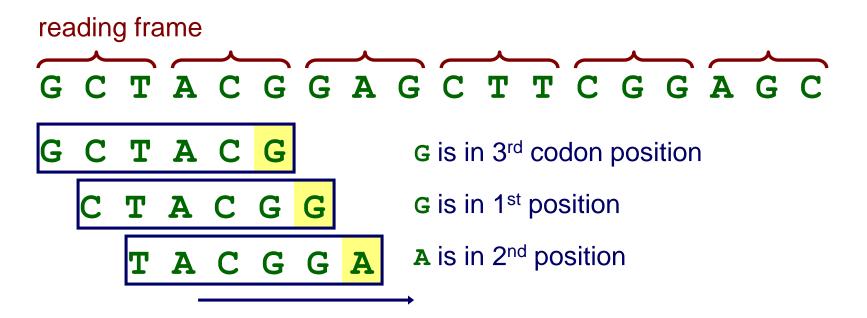
Open Reading Frames (ORFs)

- An ORF is a sequence that
 - starts with a potential start codon
 - ends with a potential stop codon, in the same reading frame
 - doesn't contain another stop codon in-frame
 - and is sufficiently long (say > 100 bases)

• An ORF meets the minimal requirements to be a protein-coding gene in an organism without introns

Markov Models & Reading Frames

- Consider modeling a given coding sequence
- For each "word" we evaluate, we'll want to consider its position with respect to the reading frame we're assuming



Can do this using an inhomogeneous model

Inhomogeneous Markov Model

- Homogenous Markov model: transition probability matrix does not change over time or position
- Inhomogenous Markov model: transition probability matrix depends on the time or position

Higher Order Markov Models

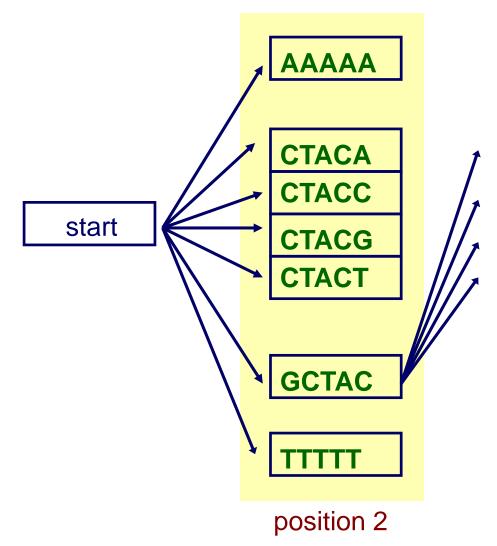
- Higher order models remember more "history"
- Additional history can have predictive value
- Example:
 - predict the next word in this sentence fragment

"

- "...you___" (are, give, passed, say, see, too, ...?)
- now predict it given more history
 - "...can you___"
 - "...say can you___"
 - "...oh say can you___

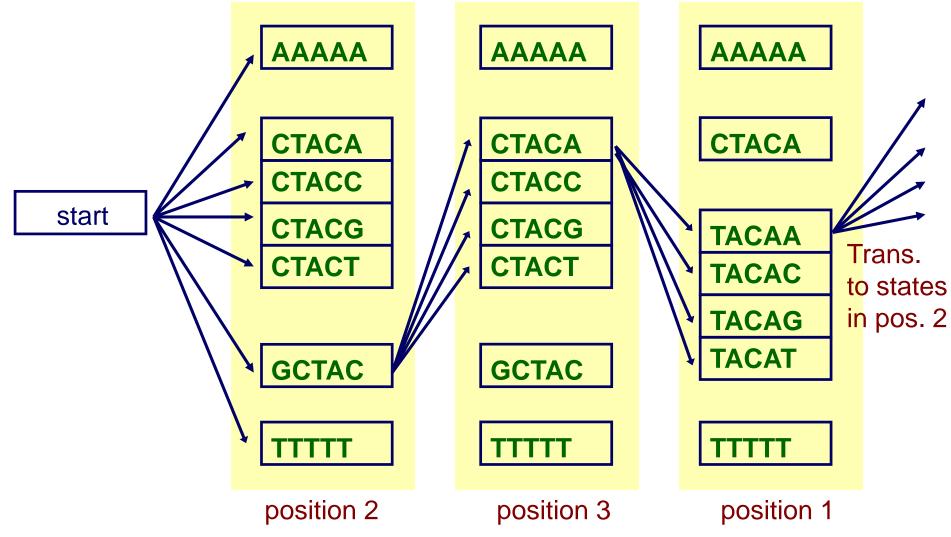
YouTube

A Fifth Order Inhomogeneous Markov Model



 $P(x_i | x_{i-5}, ..., x_{i-1}, position)$

A Fifth Order Inhomogeneous Markov Model



Selecting the Order of a Markov Model

- But the number of parameters we need to estimate grows exponentially with the order
 - for modeling DNA we need $O(4^{n+1})$ parameters for an *n*th order model
- The higher the order, the less reliable we can expect our parameter estimates to be
- Suppose we have 100k bases of sequence to estimate parameters of a model
 - for a 2nd order homogeneous Markov chain, we'd see each history 6250 times on average
 - for an 8th order chain, we'd see each history ~ 1.5 times on average

Interpolated Markov Models

- The IMM idea: manage this trade-off by interpolating among models of various orders
- *Simple* linear interpolation:

$$P_{\text{IMM}}(x_i \mid x_{i-n}, ..., x_{i-1}) = \lambda_0 P(x_i) + \lambda_1 P(x_i \mid x_{i-1})$$

$$+\lambda_n P(x_i \mid x_{i-n},...,x_{i-1})$$

• where $\sum_{i} \lambda_{i} = 1$

Interpolated Markov Models

- We can make the weights depend on the history
 - for a given order, we may have significantly more data to estimate some words than others
- General linear interpolation

$$\begin{split} P_{\text{IMM}}(x_{i} \mid x_{i-n}, ..., x_{i-1}) &= \lambda_{0} P(x_{i}) \\ &+ \lambda_{1}(x_{i-1}) P(x_{i} \mid x_{i-1}) \\ &\cdots \\ \lambda \text{ is a function of the given history} &+ \lambda_{n}(x_{i-n}, ..., x_{i-1}) P(x_{i} \mid x_{i-n}, ..., x_{i-1}) \end{split}$$

The GLIMMER System

[Salzberg et al., Nucleic Acids Research, 1998]

- System for identifying genes in bacterial genomes
- Uses 8th order, inhomogeneous, interpolated Markov models

Matt MacManes @macmanes

Follow

Did people really stop developing ab initio gene predictors in like 2009?

9:40 AM - 29 Dec 2017

Titus Brown @ctitusbrown · 29 Dec 2017

 \sim

Replying to @macmanes

I think so. From what I recall, bacterial gene prediction is 99% accurate/sensitive, and euk gene prediction is horrendously inaccurate so => mRNAseq and homology methods took over.

- How does GLIMMER determine the / values?
- First, let's express the IMM probability calculation recursively

$$P_{\text{IMM,n}}(x_i \mid x_{i-n}, ..., x_{i-1}) = \lambda_n(x_{i-n}, ..., x_{i-1})P(x_i \mid x_{i-n}, ..., x_{i-1}) + [1 - \lambda_n(x_{i-n}, ..., x_{i-1})]P_{\text{IMM,n-1}}(x_i \mid x_{i-n+1}, ..., x_{i-1})$$

• Let $c(x_{i-n},...,x_{i-1})$ be the number of times we see the history $x_{i-n},...,x_{i-1}$ in our training set

$$\lambda_n(x_{i-n},...,x_{i-1}) = 1$$
 if $c(x_{i-n},...,x_{i-1}) > 400$

• If we haven't seen $X_{i-n}, ..., X_{i-1}$ more than 400 times, then compare the counts for the following:

<i>n</i> th order history + base	(<i>n-1</i>)th order history + base		
$x_{i-n},, x_{i-1}, a$	$X_{i-n+1},\ldots,X_{i-1},A$		
$X_{i-n},, X_{i-1}, C$	$X_{i-n+1},, X_{i-1}, C$		
x_{i-n},\ldots,x_{i-1},g	$x_{i-n+1},\ldots,x_{i-1},g$		
$x_{i-n},, x_{i-1}, t$	$x_{i-n+1},, x_{i-1}, t$		

• Use a statistical test to assess whether the distributions of X_i depend on the order

<i>n</i> th order history + base	(<i>n-1</i>)th order history + base	
$x_{i-n},, x_{i-1}, a$	$X_{i-n+1},\ldots,X_{i-1},a$	
$X_{i-n},, X_{i-1}, C$	$X_{i-n+1},, X_{i-1}, C$	
$x_{i-n},, x_{i-1}, g$	$x_{i-n+1}, \dots, x_{i-1}, g$	
$x_{i-n},, x_{i-1}, t$	$X_{i-n+1},, X_{i-1}, t$	

- Null hypothesis in χ^2 test: x_i distribution is independent of order
- Define d = 1 pvalue
- If d is small we don't need the higher order history

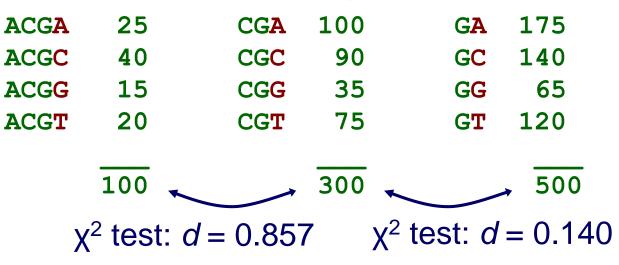
• Putting it all together

$$\lambda_{n}(x_{i-n},...,x_{i-1}) = \begin{cases} 1 & \text{if } c(x_{i-n},...,x_{i-1}) \\ d \times \frac{c(x_{i-n},...,x_{i-1})}{400} & \text{else if } d \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

where $d \in (0,1)$

IMM Example

• Suppose we have the following counts from our training set



 $\lambda_3(ACG) = 0.857 \times 100/400 = 0.214$ $\lambda_2(CG) = 0$ (d < 0.5, c(CG) < 400) $\lambda_1(G) = 1$ (c(G) > 400)

IMM Example (Continued)

• Now suppose we want to calculate $P_{\text{IMM},3}(T \mid ACG)$

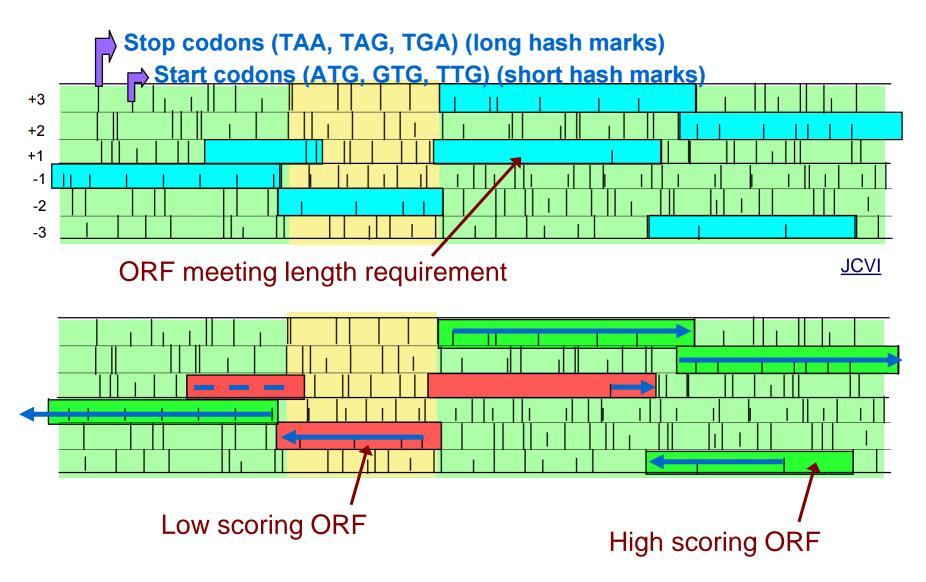
$$P_{\text{IMM},1}(T \mid G) = \lambda_1(G)P(T \mid G) + (1 - \lambda_1(G))P_{\text{IMM},0}(T)$$
$$= P(T \mid G)$$

$$\begin{split} P_{\text{IMM},2}(T \mid CG) &= \lambda_2(CG)P(T \mid CG) + (1 - \lambda_2(CG))P_{\text{IMM},1}(T \mid G) \\ &= P(T \mid G) \\ P_{\text{IMM},3}(T \mid ACG) &= \lambda_3(ACG)P(T \mid ACG) + (1 - \lambda_3(ACG))P_{\text{IMM},2}(T \mid CG) \\ &= 0.214 \times P(T \mid ACG) + (1 - 0.214) \times P(T \mid G) \\ &= 0.214 \times 0.2 + (1 - 0.214) \times 0.24 \end{split}$$

Gene Recognition in GLIMMER

- Essentially ORF classification
- For each ORF
 - calculate the probability of the ORF sequence in each of the 6 possible reading frames
 - if the highest scoring frame corresponds to the reading frame of the ORF, mark the ORF as a gene
- For overlapping ORFs that look like genes
 - score overlapping region separately
 - predict only one of the ORFs as a gene

Gene Recognition in GLIMMER



GLIMMER Experiment

- 8th order IMM vs. 5th order Markov model
- Trained on 1168 genes (ORFs really)
- Tested on 1717 annotated (more or less known) genes

GLIMMER Results

	TP	FN	FP & TP?
Model	Genes found	Genes missed	Additional genes
GLIMMER IMM	1680 (97.8%)	37	209
5 th -Order Markov	1574 (91.7%)	143	104

The first column indicates how many of the 1717 annotated genes in *H.influenzae* were found by each algorithm. The 'additional genes' column shows how many extra genes, not included in the 1717 annotated entries, were called genes by each method.

- GLIMMER has greater sensitivity than the baseline
- It's not clear whether its precision/specificity is better