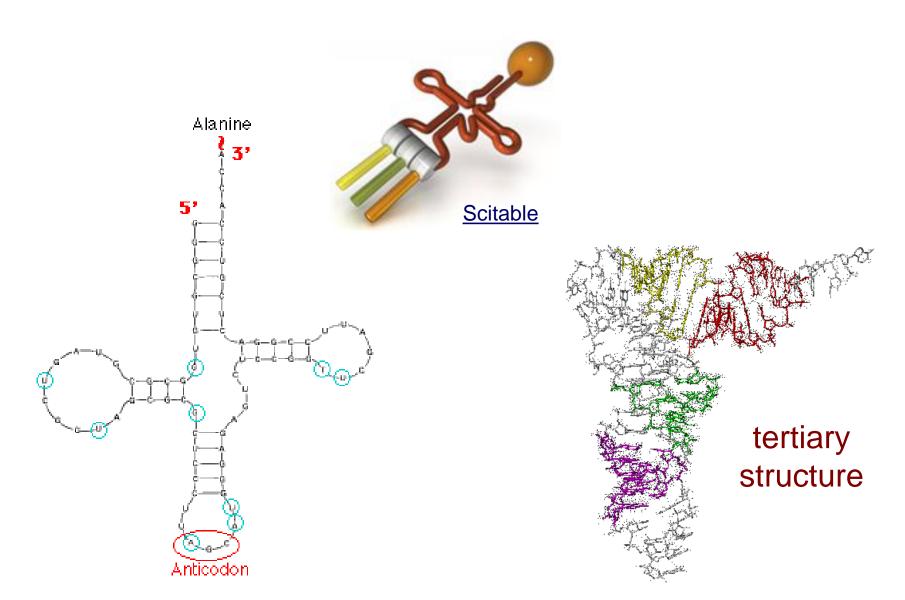
RNA Secondary Structure Prediction

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2018
Anthony Gitter
gitter@biostat.wisc.edu

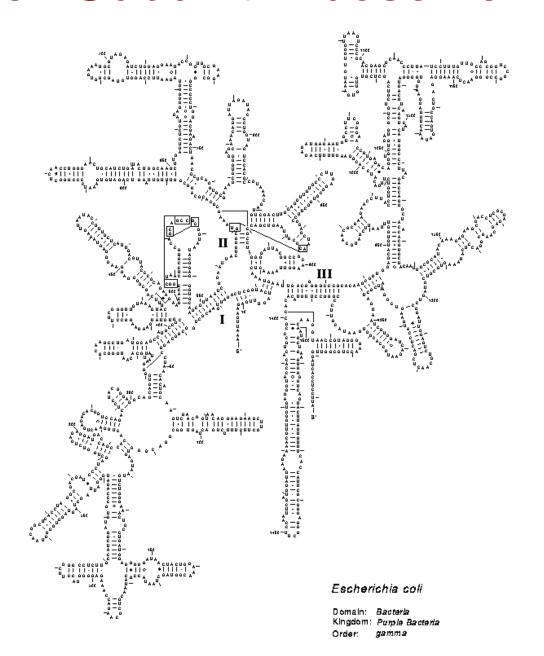
Goals for Lecture

Key concepts

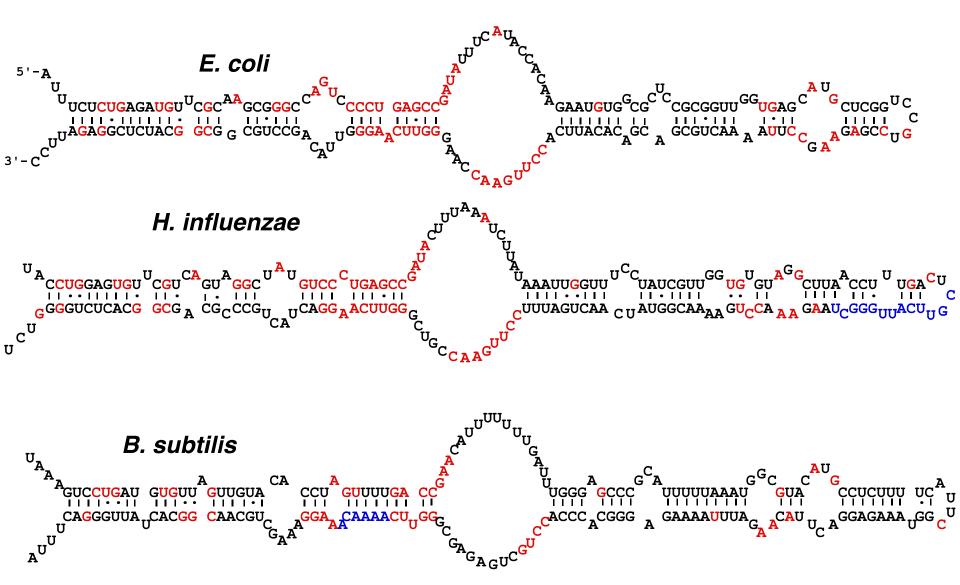
- RNA secondary structure
- Secondary structure features: stems, loops, bulges
- Pseudoknots
- Nussinov algorithm
- Adapting Nussinov to take free energy into account

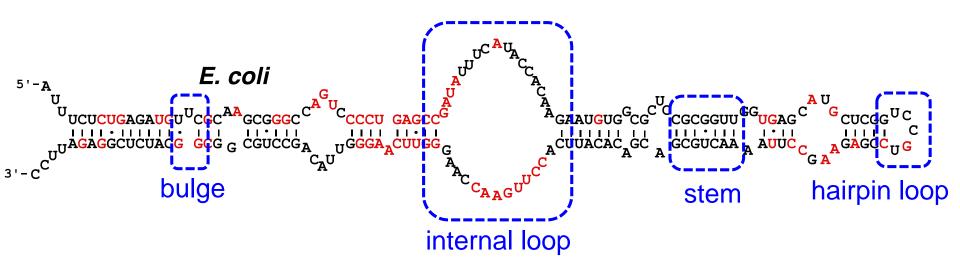

Why RNA is Interesting

- Messenger RNA (mRNA) isn't the only important class of RNA
 - ribosomal RNA (rRNA)
 - ribosomes are complexes that incorporate several RNA subunits in addition to numerous protein units
 - transfer RNA (tRNA)
 - transport amino acids to the ribosome during translation
 - the spliceosome, which performs intron splicing, is a complex with several RNA units
 - microRNAs and others that play regulatory roles
 - many viruses (e.g. HIV) have RNA genomes
 - guide RNA
 - sequence complementary determines whether to cleave DNA
- Folding of an mRNA can be involved in regulating the gene's expression


RNA Secondary Structure

- RNA is typically single stranded
- Folding, in large part is determined by base-pairing
 A-U and C-G are the canonical base pairs
 other bases will sometimes pair, especially G-U
- Base-paired structure is referred to as the secondary structure of RNA
- Related RNAs often have homologous secondary structure without significant sequence similarity


tRNA Secondary Structure


Small Subunit Ribosomal RNA

6S RNA Secondary Structure

Secondary Structure Features

Four Key Problems

Predicting RNA secondary structure

Focus for today

Given: RNA sequence

Do: predict secondary structure that sequence will fold into

Searching for instances of a given structure

Given: an RNA sequence or its secondary structure

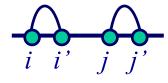
Do: find sequences that will fold into a similar structure

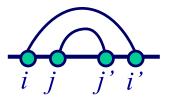
Modeling a family of RNAs

Given: a set of RNA sequences with similar secondary structure

Do: construct a model that captures the secondary structure regularities of the set

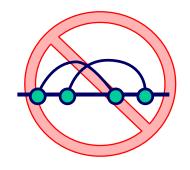
Identifying novel RNA genes


Given: a pair of homologous DNA sequences


Do: identify subsequences that appear to have highly conserved RNA secondary structure (putative RNA genes)

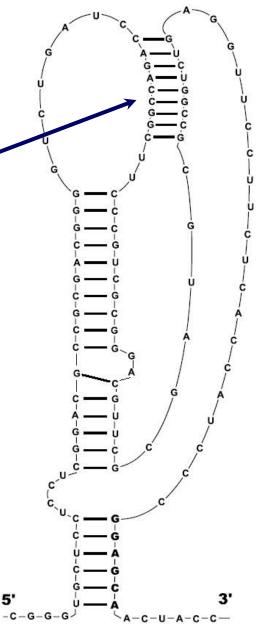
RNA Folding Assumption

- Algorithms we'll consider assume that base pairings do not cross
- For base-paired positions i, i and j, j, with i < i and j < j, we must have either


$$i < i' < j < j'$$
 or $j < j' < i < i'$ (not nested)

$$i < j < j' < i'$$
 or $j < i < i' < j'$ (nested)

• Can't have i < j < i' < j' or j < i < j' < i'


Pseudoknots

pseudoknot ·

 These crossings are called pseudoknots

- Dynamic programming breaks down if pseudoknots are allowed
- Fortunately, they are not very frequent

- Modern software does support them
 - Akiyama et al. 2018

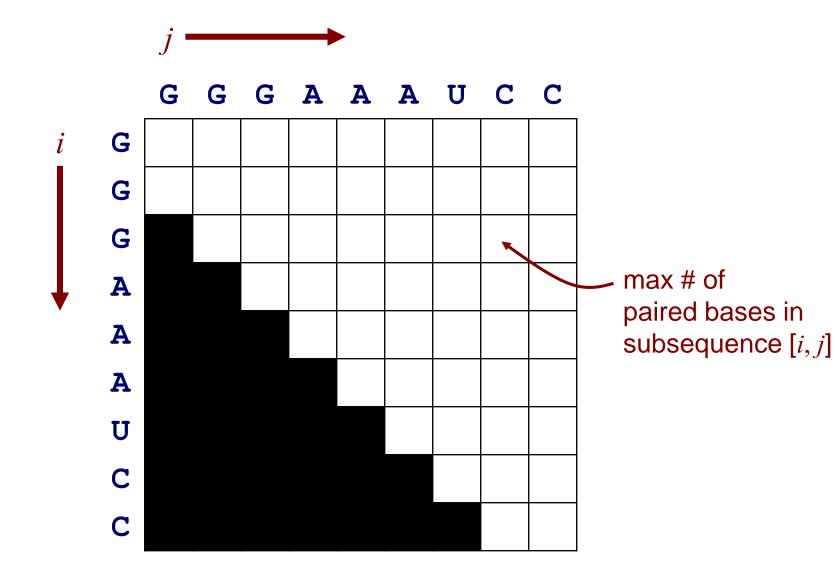
Simplest RNA Secondary Structure Task

Given:

- An RNA sequence
- The constraint that pseudoknots are not allowed

Do:

 Find a secondary structure for the RNA that maximizes the number of base pairing positions


Predicting RNA Secondary Structure: the Nussinov Algorithm

[Nussinov et al., SIAM Journal of Applied Mathematics 1978]

Key idea:

- Do this using dynamic programming
 - start with small subsequences
 - progressively work to larger ones

DP in the Nussinov Algorithm

DP in the Nussinov Algorithm

• Let
$$\delta(i, j) = \begin{cases} 1 & \text{if } x_i \text{ and } x_j \text{ are complementary} \\ 0 & \text{otherwise} \end{cases}$$

Initialization:

$$\gamma(i, i-1) = 0$$
 for $i = 2$ to L
 $\gamma(i, i) = 0$ for $i = 1$ to L

Recursion

• Recursion
$$\gamma(i,j) = \max \begin{cases} \gamma(i+1,j) \\ \gamma(i,j-1) \\ \gamma(i+1,j-1) + \delta(i,j) \\ \max_{i < k < j} \left[\gamma(i,k) + \gamma(k+1,j) \right] \end{cases}$$
 paired bases in subsequence $[i,j]$

Nussinov Algorithm Traceback

```
push (1,L) onto stack
repeat until stack is empty
    pop(i,j)
    if i \ge j continue
    else if \gamma(i+1, j) = \gamma(i, j) push (i+1, j)
    else if \gamma(i, j-1) = \gamma(i, j) push (i, j-1)
    else if \gamma(i+1, j-1) + \delta(i, j) = \gamma(i, j)
         record i, j base pair
         push (i+1, j-1)
    else for k = i + 1 to j-1: if \gamma(i,k) + \gamma(k+1,j) = \gamma(i,j)
         push (k+1, j)
         push(i,k)
         break
```

Predicting RNA Secondary Structure by Energy Minimization

- It's naïve to predict folding just by maximizing the number of base pairs
- However, we can generalize the key recurrence relation so that we're <u>minimizing</u> free energy instead

$$E(i,j) = \min \begin{cases} E(i+1,j) \\ E(i,j-1) \\ \min_{i < k < j} [E(i,k) + E(k+1,j)] \\ P(i,j) \longleftarrow \text{case that } i \text{ and } j \text{ are base paired} \end{cases}$$

Predicting RNA Secondary Structure by Energy Minimization

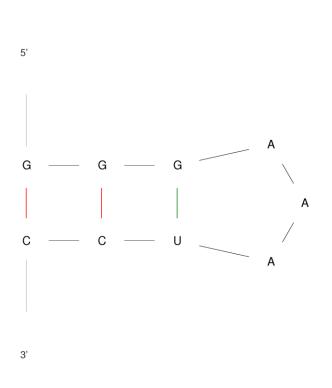
 A sophisticated program, such as Mfold [Zuker et al.], can take into account free energy of the "local environment" of [i, j]

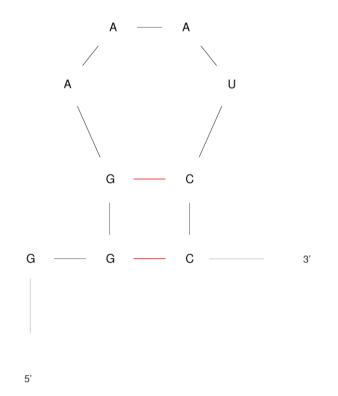
```
 \begin{cases} \alpha(i,j) + \operatorname{LoopEnergy}(j-i-1) \\ \alpha(i,j) + \operatorname{StackingEnergy}(i,j,i+1,j-1) + P(i+1,j-1) \\ \min_{k \geq 1} \left[ \alpha(i,j) + \operatorname{BulgeEnergy}(k) + P(i+k+1,j-1) \right] \\ \min_{k \geq 1} \left[ \alpha(i,j) + \operatorname{BulgeEnergy}(k) + P(i+1,j-k-1) \right] \\ \min_{k,l \geq 1} \left[ \alpha(i,j) + \operatorname{LoopEnergy}(k+l) + P(i+k+1,j-l-1) \right] \\ \min_{j > k > i} \left[ \alpha(i,j) + E(i+1,k) + E(k+1,j-1) \right] \end{cases}
```

Predicting RNA Secondary Structure by Energy Minimization

$$\alpha(i,j) + \operatorname{LoopEnergy}(j-i-1) \quad \min_{k,l \geq 1} \left[\alpha(i,j) + \operatorname{LoopEnergy}(k+l) + P(i+k+1,j-l-1) \right]$$

$$\alpha(i,j) + \operatorname{LoopEnergy}(j-i-1) \quad \min_{k,l \geq 1} \left[\alpha(i,j) + \operatorname{LoopEnergy}(k+l) + P(i+k+1,j-l-1) \right]$$


$$\alpha(i,j) + \operatorname{LoopEnergy}(k+l) + P(i+k+1,j-l-1)$$


$$\alpha(i,j) + \operatorname{LoopEnergy}(k+l) + \operatorname{LoopEnergy}(k+l)$$

$$\alpha(i,j) + \operatorname{LoopEnergy}(k+l) + \operatorname{LoopEnergy}($$

Mfold example

GGGAAAUCC

 $\Delta G = -0.80 \text{ kcal/mol}$

 $\Delta G = 0.20 \text{ kcal/mol}$