Stochastic Context Free Grammars for RNA Structure Modeling

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2018
Anthony Gitter
gitter@biostat.wisc.edu

Goals for Lecture

Key concepts

- transformational grammars
- the Chomsky hierarchy
- context free grammars
- stochastic context free grammars
- parsing ambiguity

Not covered, but here for your reference

- the Inside and Outside algorithms
- parameter learning via the Inside-Outside algorithm

Modeling RNA with Stochastic Context Free Grammars

- Consider tRNA genes
 - 274 in yeast genome, ~1500 in human genome
 - get transcribed, like protein-coding genes
 - don't get translated, therefore base statistics much different than protein-coding genes
 - but secondary structure is conserved
- To recognize new tRNA genes, model known ones using stochastic context free grammars [Eddy & Durbin, 1994; Sakakibara et al. 1994]
- But what is a grammar?

Transformational Grammars

- A transformational grammar characterizes a set of legal strings
- The grammar consists of
 - a set of abstract nonterminal symbols

$$\{s, c_1, c_2, c_3, c_4\}$$

a set of terminal symbols (those that actually appear in strings)

$$\{A, C, G, U\}$$

a set of productions

$$s \to c_1$$
 $c_1 \to Uc_2$ $c_2 \to Ac_3$ $c_3 \to A$ $c_4 \to A$ $c_2 \to Gc_4$ $c_3 \to G$

A Grammar for Stop Codons

$$s \to c_1$$
 $c_1 \to Uc_2$ $c_2 \to Ac_3$ $c_3 \to A$ $c_4 \to A$ $c_2 \to Gc_4$ $c_3 \to G$

- This grammar can generate the 3 stop codons: UAA, UAG, UGA
- · With a grammar we can ask questions like
 - what strings are derivable from the grammar?
 - can a particular string be derived from the grammar?
 - what sequence of productions can be used to derive a particular string from a given grammar?

The Derivation for UAG

$$s \to c_1$$
 $c_1 \to Uc_2$ $c_2 \to Ac_3$ $c_3 \to A$ $c_4 \to A$ $c_2 \to Gc_4$ $c_3 \to G$

$$s \Rightarrow c_1 \Rightarrow Uc_2 \Rightarrow UAc_3 \Rightarrow UAG$$

The Parse Tree for UAG

$$s \rightarrow c_1$$
 $c_1 \rightarrow Uc_2$ $c_2 \rightarrow Ac_3$ $c_3 \rightarrow A$ $c_4 \rightarrow A$

$$c_2 \rightarrow Gc_4$$
 $c_3 \rightarrow G$

$$U$$

$$C_1$$

$$A$$

$$C_3$$

Some Shorthand

The Chomsky Hierarchy

A hierarchy of grammars defined by restrictions on productions

The Chomsky Hierarchy

- Regular grammars $u \to Xv$ $u \to X$

Context-free grammars

$$u \rightarrow \beta$$

• Context-sensitive grammars $\alpha_1 u \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$

$$\alpha_1 u \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$$

Unrestricted grammars $\alpha_1 u \alpha_2 \rightarrow \alpha_3$

$$\alpha_1 u \alpha_2 \rightarrow \alpha_3$$

 \mathcal{U}, \mathcal{V} are nonterminals

X is a terminal

 $\alpha_1, \alpha_2, \alpha_3$ are any sequence of terminals/nonterminals

is any non-null sequence of terminals/nonterminals

CFGs and RNA

- Context free grammars are well suited to modeling RNA secondary structure because they can represent base pairing preferences
- A grammar for a 3-base stem with a loop of either GAAA or GCAA

$$s \rightarrow Aw_1U \mid Cw_1G \mid Gw_1C \mid Uw_1A$$

 $w_1 \rightarrow Aw_2U \mid Cw_2G \mid Gw_2C \mid Uw_2A$
 $w_2 \rightarrow Aw_3U \mid Cw_3G \mid Gw_3C \mid Uw_3A$
 $w_3 \rightarrow GAAA \mid GCAA$

CFGs and RNA

a. Productions

$$\begin{array}{lll} P &= \left\{ & S_0 \to S_1, & S_7 \to G \ S_8, \\ & S_1 \to C \ S_2 \ G, & S_8 \to G, \\ & S_1 \to A \ S_2 \ U, & S_8 \to U, \\ & S_2 \to A \ S_3 \ U, & S_9 \to A \ S_{10} \ U, \\ & S_3 \to S_4 \ S_9, & S_{10} \to C \ S_{10} \ G, \\ & S_4 \to U \ S_5 \ A, & S_{10} \to G \ S_{11} \ C, \\ & S_5 \to C \ S_6 \ G, & S_{11} \to A \ S_{12} \ U, \\ & S_6 \to A \ S_7, & S_{12} \to U \ S_{13}, \\ & S_7 \to U \ S_7, & S_{13} \to C \end{array} \right\}$$

b. Derivation

S_0	\Rightarrow	$S_1 \Rightarrow CS_2G \Rightarrow CAS_3UG \Rightarrow CAS_4S_9UG$		
	\Rightarrow	$CAUS_6AS_9UG \Rightarrow CAUCS_6GAS_9UG$		
	\Rightarrow	$\mathtt{CAUCA}S_7\mathtt{GA}S_9\mathtt{UG} \ \Rightarrow \ \mathtt{CAUCAG}S_8\mathtt{GA}S_9\mathtt{UG}$		
	\Rightarrow	$\mathtt{CAUCAGGGA}S_{9}\mathtt{UG} \ \Rightarrow \ \mathtt{CAUCAGGGAA}S_{10}\mathtt{UUG}$		
	\Rightarrow	CAUCAGGGAAG S_{11} CUUG		
	\Rightarrow	CAUCAGGGAAGAS ₁₂ UCUUG		
	\Rightarrow	CAUCAGGGAAGAU S_{13} UCUUG		
	⇒	CAUCAGGGAAGAUCUCUUG.		

c. Parse tree

d. Secondary Structure

Ambiguity in Parsing

"I shot an elephant in my pajamas. How he got in my pajamas, I'll never know." – Groucho Marx

An Ambiguous RNA Grammar

$$s \to G \ s \ C$$

$$s \to G \ s$$

$$s \to A \ A$$

 With this grammar, there are 3 parses for the string GGGAACC

A Probabilistic Version of the Stop Codon Grammar

- Each production has an associated probability
- Probabilities for productions with the same left-hand side sum to 1
- This regular grammar has a corresponding Markov chain model

Stochastic Context Free Grammars

(a.k.a. Probabilistic Context Free Grammars)

$$0.25 0.25 0.25 0.25 0.25$$

$$s \to Aw_1U \mid Cw_1G \mid Gw_1C \mid Uw_1A$$

$$0.1 0.4 0.4 0.1$$

$$w_1 \to Aw_2U \mid Cw_2G \mid Gw_2C \mid Uw_2A$$

$$0.25 0.25 0.25 0.25$$

$$w_2 \to Aw_3U \mid Cw_3G \mid Gw_3C \mid Uw_3A$$

$$0.8 0.2$$

$$w_3 \to GAAA \mid GCAA$$

Stochastic Grammars?

...the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term.

Noam Chomsky (famed linguist)

Every time I fire a linguist, the performance of the recognizer improves.

Fred Jelinek(former head of IBM speech recognition group)

Credit for pairing these quotes goes to Dan Jurafsky and James Martin, Speech and Language Processing

Three Key Questions

- How likely is a given sequence?
 the Inside algorithm
- What is the most probable parse for a given sequence?
 - the Cocke-Younger-Kasami (CYK) algorithm
- How can we learn the SCFG parameters given a grammar and a set of sequences?
 the Inside-Outside algorithm

Chomsky Normal Form

 It is convenient to assume that our grammar is in Chomsky Normal Form; i.e. all productions are of the form:

$$v o yz$$
 right hand side consists of two nonterminals $v o A$ right hand side consists of a single terminal

Any CFG can be put into Chomsky Normal Form

Converting a Grammar to CNF

$$s \to G \ s \ C$$

$$s \to G \ s$$

$$s \to A \ A$$

$$s \to b_G \ s$$

$$s \to b_G \ s$$

$$s \to b_A b_A$$

$$b_G \to G$$

$$b_C \to C$$

$$b_A \to A$$

Parameter Notation

• For productions of the form $v \rightarrow yz$, we'll denote the associated probability parameters

$$t_{v}(y,z)$$
 transition

• For productions of the form $v \to A$, we'll denote the associated probability parameters

$$e_{v}(A)$$
 emission

Determining the Likelihood of a Sequence: The Inside Algorithm

- Dynamic programming method, analogous to the Forward algorithm
- Involves filling in a 3D matrix

$$\alpha(i,j,v)$$

representing the probability of <u>all</u> parse subtrees rooted at nonterminal v for the subsequence from i to j

Determining the Likelihood of a Sequence: The Inside Algorithm

• $\alpha(i, j, v)$: the probability of all parse subtrees rooted at nonterminal v for the subsequence from i to j

Inside Calculation Example

Determining the Likelihood of a Sequence: The Inside Algorithm

$$\alpha(i, j, v) = \sum_{v=1}^{M} \sum_{z=1}^{M} \sum_{k=i}^{j-1} t_v(y, z) \alpha(i, k, y) \alpha(k+1, j, z)$$

M is the number of nonterminals in the grammar

The Inside Algorithm

• Initialization (for i = 1 to L, v = 1 to M)

$$\alpha(i,i,v) = e_{v}(x_{i})$$

• Iteration (for i = L-1 to 1, j = i+1 to L, v = 1 to M)

$$\alpha(i, j, v) = \sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=i}^{j-1} t_{v}(y, z) \alpha(i, k, y) \alpha(k+1, j, z)$$

Termination

$$Pr(x) = \alpha(1, L, 1)$$

$$\uparrow$$
start nonterminal

Learning SCFG Parameters

- If we know the parse tree for each training sequence, learning the SCFG parameters is simple
 - no hidden part of the problem during training
 - count how often each parameter (i.e. production) is used
 - normalize/smooth to get probabilities

- More commonly, there are many possible parse trees per sequence – we don't know which one is correct
 - thus, use an EM approach (Inside-Outside)
 - iteratively
 - determine expected # times each production is used
 - consider all parses
 - weight each by its probability
 - set parameters to maximize likelihood given these counts

The Inside-Outside Algorithm

- We can learn the parameters of an SCFG from training sequences using an EM approach called Inside-Outside
- In the E-step, we determine
 - the expected number of times each *nonterminal* is used in parses c(v)
 - the expected number of times each *production* is used in parses $c(v \rightarrow yz)$

$$c(v \rightarrow A)$$

In the M-step, we update our production probabilities

• $\beta(i, j, v)$: the probability of parse trees rooted at the start nonterminal, excluding the probability of all subtrees rooted at nonterminal v covering the subsequence from i to j

Outside Calculation Example

$$s \to b_G \ p$$

$$p \to s \ b_C$$

$$s \to b_G \ s$$

$$s \to b_A \ b_A$$

$$b_G \to G$$

$$b_C \to C$$

$$b_A \to A$$

$$\beta(2,6,s) = t_p(s,b_c)\alpha(7,7,b_c)\beta(2,7,p)$$

- We can recursively calculate $\beta(i, j, v)$ from β values we've calculated for y
- The first case we consider is where v is used in productions of the form: $y \rightarrow zv$

• The second case we consider is where v is used in productions of the form: $y \rightarrow vz$

$$\sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=j+1}^{L} t_{y}(v,z) \alpha(j+1,k,z) \beta(i,k,y)$$

Initialization

$$\beta(1, L, 1) = 1$$
 (the *start* nonterminal)
 $\beta(1, L, v) = 0$ for $v = 2$ to M

• Iteration (for i = 1 to L, j = L to i, v = 1 to M)

$$\beta(i, j, v) = \sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=1}^{i-1} t_{y}(z, v) \alpha(k, i-1, z) \beta(k, j, y) + \sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=j+1}^{L} t_{y}(v, z) \alpha(j+1, k, z) \beta(i, k, y)$$

The Inside-Outside Algorithm

- We can learn the parameters of an SCFG from training sequences using an EM approach called Inside-Outside
- In the E-step, we determine
 - the expected number of times each *nonterminal* is used in parses c(v)
 - the expected number of times each *production* is used in parses $c(v \rightarrow yz)$

$$c(v \rightarrow A)$$

In the M-step, we update our production probabilities

The Inside-Outside Algorithm

The EM re-estimation equations (for 1 sequence) are:

$$\hat{e}_{v}(A) = \frac{c(v \to A)}{c(v)} = \frac{\sum_{i \mid x_{i} = A} \beta(i, i, v) e_{v}(A)}{\sum_{i=1}^{L} \sum_{j=i}^{L} \beta(i, j, v) \alpha(i, j, v)}$$

$$\hat{c}_{v}(y, z) = \frac{c(v \to yz)}{c(v)}$$

$$= \frac{\sum_{i=1}^{L-1} \sum_{j=i+1}^{L} \sum_{k=i}^{j-1} t_{v}(y, z) \beta(i, j, v) \alpha(i, k, y) \alpha(k+1, j, z)}{\sum_{i=1}^{L} \sum_{j=i}^{L} \beta(i, j, v) \alpha(i, j, v)}$$

Finding the Most Likely Parse: The CYK Algorithm

Involves filling in a 3D matrix

$$\gamma(i,j,v)$$

representing the most probable parse subtree rooted at nonterminal v for the subsequence from i to j

and a matrix for the traceback

$$\tau(i,j,v)$$

storing information about the production at the top of this parse subtree

The CYK Algorithm

- Initialization (for i = 1 to L, v = 1 to M) $\gamma(i,i,v) = \log e_v(x_i)$ $\tau(i,i,v) = (0,0,0)$
- Iteration (for i = 1 to L l, j = i+1 to l, v = 1 to l)

$$\gamma(i, j, v) = \max_{y, z} \left\{ \gamma(i, k, y) + \gamma(k+1, j, z) + \log t_v(y, z) \right\}$$

$$k=i...j-1$$

$$\tau(i, j, v) = \arg\max_{y, z} \{ \gamma(i, k, y) + \gamma(k+1, j, z) + \log t_v(y, z) \}$$

$$k=i...j-1$$

Termination

$$\log P(x, \hat{\pi} \mid \theta) = \gamma(1, L, 1)$$

start nonterminal

The CYK Algorithm Traceback

Initialization:

```
push (1, L, 1) on the stack
```

Iteration:

```
pop (i, j, v)
                         // pop subsequence/nonterminal pair
(y, z, k) = \tau(i, j, v) // get best production identified by CYK
if (y, z, k) == (0,0,0) // indicating a leaf
    attach x_i as the child of v
else
    attach y, z to parse tree as children of v
    push(i, k, y)
    push(k+1, j, z)
```

Comparison of SCFG Algorithms to HMM Algorithms

	HMM algorithm	SCFG algorithm
optimal alignment	Viterbi	CYK
probability of sequence	forward	inside
EM parameter estimation	forward-backward	inside-outside
memory complexity	O(LM)	$O(L^2M)$
time complexity	$O(LM^2)$	$O(L^3M^3)$