Stochastic Context Free Grammars for RNA Structure Modeling

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2018
Anthony Gitter gitter@biostat.wisc.edu

Goals for Lecture

Key concepts

- transformational grammars
- the Chomsky hierarchy
- context free grammars
- stochastic context free grammars
- parsing ambiguity

Not covered, but here for your reference

- the Inside and Outside algorithms
- parameter learning via the Inside-Outside algorithm

Modeling RNA with Stochastic Context Free Grammars

- Consider tRNA genes
- 274 in yeast genome, ~1500 in human genome
- get transcribed, like protein-coding genes
- don't get translated, therefore base statistics much different than protein-coding genes
- but secondary structure is conserved
- To recognize new tRNA genes, model known ones using stochastic context free grammars [Eddy \& Durbin, 1994; Sakakibara et al. 1994]
- But what is a grammar?

Transformational Grammars

- A transformational grammar characterizes a set of legal strings
- The grammar consists of
- a set of abstract nonterminal symbols

$$
\left\{s, c_{1}, c_{2}, c_{3}, c_{4}\right\}
$$

- a set of terminal symbols (those that actually appear in strings)
$\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{U}\}$
- a set of productions

$$
\begin{aligned}
s \rightarrow c_{1} \quad c_{1} \rightarrow \mathrm{U} c_{2} \quad c_{2} & \rightarrow \mathrm{~A} c_{3} \quad c_{3} \rightarrow \mathrm{~A} \quad c_{4} \rightarrow \mathrm{~A} \\
& c_{2} \rightarrow \mathrm{G} c_{4} \quad c_{3} \rightarrow \mathrm{G}
\end{aligned}
$$

A Grammar for Stop Codons

$$
\begin{aligned}
s \rightarrow c_{1} \quad c_{1} \rightarrow \mathrm{U} c_{2} \quad c_{2} & \rightarrow \mathrm{~A} c_{3} \quad c_{3} \rightarrow \mathrm{~A} \quad c_{4} \rightarrow \mathrm{~A} \\
& c_{2} \rightarrow \mathrm{G} c_{4} \quad c_{3} \rightarrow \mathrm{G}
\end{aligned}
$$

- This grammar can generate the 3 stop codons: UAA, UAG, UGA
- With a grammar we can ask questions like
- what strings are derivable from the grammar?
- can a particular string be derived from the grammar?
- what sequence of productions can be used to derive a particular string from a given grammar?

The Derivation for UAG

$$
\begin{aligned}
s \rightarrow c_{1} \quad c_{1} \rightarrow \mathrm{U} c_{2} \quad c_{2} & \rightarrow \mathrm{~A} c_{3} \quad c_{3} \rightarrow \mathrm{~A} \quad c_{4} \rightarrow \mathrm{~A} \\
c_{2} & \rightarrow \mathrm{G} c_{4} \quad c_{3} \rightarrow \mathrm{G}
\end{aligned}
$$

$$
s \Rightarrow c_{1} \Rightarrow \mathrm{U} c_{2} \Rightarrow \mathrm{UA} c_{3} \Rightarrow \mathrm{UAG}
$$

The Parse Tree for UAG

$$
s \rightarrow c_{1} \quad c_{1} \rightarrow \mathrm{U} c_{2} \quad c_{2} \rightarrow \mathrm{~A} c_{3} \quad c_{3} \rightarrow \mathrm{~A} \quad c_{4} \rightarrow \mathrm{~A}
$$

Some Shorthand

$$
\left.\begin{aligned}
& c_{2} \rightarrow \mathrm{~A} c_{3} \\
& c_{2} \rightarrow \mathrm{G} c_{4}
\end{aligned} \quad \longleftrightarrow \quad c_{2} \rightarrow \mathrm{~A} c_{3} \right\rvert\, \mathrm{G} c_{4}
$$

The Chomsky Hierarchy

- A hierarchy of grammars defined by restrictions on productions

The Chomsky Hierarchy

- Regular grammars

$$
u \rightarrow \mathrm{X} v \quad u \rightarrow \mathrm{X}
$$

- Context-free grammars

$$
u \rightarrow \beta
$$

- Context-sensitive grammars

$$
\alpha_{1} u \alpha_{2} \rightarrow \alpha_{1} \beta \alpha_{2}
$$

- Unrestricted grammars $\alpha_{1} u \alpha_{2} \rightarrow \alpha_{3}$
u, v are nonterminals
X is a terminal
$\alpha_{1}, \alpha_{2}, \alpha_{3}$ are any sequence of terminals/nonterminals
β is any non-null sequence of terminals/nonterminals

CFGs and RNA

- Context free grammars are well suited to modeling RNA secondary structure because they can represent base pairing preferences
- A grammar for a 3-base stem with a loop of either GAAA or GCAA

$$
\begin{aligned}
& s \rightarrow \mathrm{~A} w_{1} \mathrm{U}\left|\mathrm{C} w_{1} \mathrm{G}\right| \mathrm{G} w_{1} \mathrm{C} \mid \mathrm{U} w_{1} \mathrm{~A} \\
& w_{1} \rightarrow \mathrm{~A} w_{2} \mathrm{U}\left|\mathrm{C} w_{2} \mathrm{G}\right| \mathrm{G} w_{2} \mathrm{C} \mid \mathrm{U} w_{2} \mathrm{~A} \\
& w_{2} \rightarrow \mathrm{~A} w_{3} \mathrm{U}\left|\mathrm{C} w_{3} \mathrm{G}\right| \mathrm{G} w_{3} \mathrm{C} \mid \mathrm{U} w_{3} \mathrm{~A} \\
& w_{3} \rightarrow \mathrm{GAAA} \mid \mathrm{GCAA}
\end{aligned}
$$

CFGs and RNA

a. Productions

$$
P=\left\{\begin{array}{ll}
S_{0} \rightarrow S_{1}, & S_{7} \rightarrow \mathrm{G} S_{8}, \\
S_{1} \rightarrow \mathrm{C} S_{2} \mathrm{G}, & S_{8} \rightarrow \mathrm{G}, \\
S_{1} \rightarrow \mathbb{S} S_{2} \mathrm{U}, & S_{8} \rightarrow \mathrm{U}, \\
S_{2} \rightarrow \mathbb{A} S_{3} \mathrm{U}, & S_{9} \rightarrow \mathrm{~A} S_{10} \mathrm{U}, \\
S_{3} \rightarrow S_{4} S_{9}, & S_{10} \rightarrow \mathrm{C} S_{10} \mathrm{G}, \\
S_{4} \rightarrow \mathrm{U} S_{\mathrm{B}} \mathrm{~A}, & S_{10} \rightarrow \mathrm{G} S_{11} \mathrm{C}, \\
S_{\mathrm{5}} \rightarrow \mathrm{C} S_{8} \mathrm{G}, & S_{11} \rightarrow \mathrm{~A} S_{12} \mathrm{U}, \\
S_{\mathrm{E}} \rightarrow \mathrm{~A} S_{7}, & S_{12} \rightarrow \mathrm{U} S_{13}, \\
S_{7} \rightarrow \mathrm{U} S_{7}, & S_{13} \rightarrow \mathrm{C}
\end{array}\right\}
$$

c. Parse tree

b. Derivation

$$
\begin{aligned}
& S_{\mathrm{O}} \Rightarrow S_{1} \Rightarrow \mathrm{CS}_{2} \mathrm{G} \Rightarrow \mathrm{CaS}_{3} \mathrm{UG} \Rightarrow \mathrm{Ca}_{4} \mathrm{~S}_{\mathrm{g}} \mathrm{UG} \\
& \Rightarrow \mathrm{CAUS}_{5} \mathrm{~A}_{5} \mathrm{UGG} \Rightarrow \mathrm{CAUC}_{5} \mathrm{CAA}_{9} \mathrm{SGG} \\
& \Rightarrow \text { CaUCA } S_{7} \mathrm{Ga} S_{9} \mathrm{UG} \Rightarrow \mathrm{CaUCAG} 5_{8} G A S_{9} \mathrm{UG} \\
& \Rightarrow \text { caucaggai } S_{9} \text { UG } \Rightarrow \text { caucaggaa } S_{10} \text { UUG } \\
& \Rightarrow \text { caucaggaag } S_{11} \text { cuUg } \\
& \Rightarrow \text { cauchggataga. } 12 \text { ucuug } \\
& \Rightarrow \text { caucaggaagau }{ }_{13} \text { UCUUG } \\
& \Rightarrow \text { cauchggaagaucucuug. }
\end{aligned}
$$

d. Secondary Structure

Ambiguity in Parsing

"I shot an elephant in my pajamas. How he got in my pajamas, l'll never know." - Groucho Marx

An Ambiguous RNA Grammar

$s \rightarrow G s C$
$s \rightarrow G s$
$s \rightarrow A A$

- With this grammar, there are 3 parses for the string GGGAACC

A Probabilistic Version of the Stop Codon Grammar

| $\stackrel{1.0}{\rightarrow} c_{1}$ | $c_{1} \xrightarrow{1.0} \mathrm{U} c_{2}$ | $\xrightarrow{c_{2} \xrightarrow{0.7} \mathrm{~A} c_{3}}$$c_{3} \xrightarrow{0.2} \mathrm{~A}$ $c_{4} \xrightarrow{1.0} \mathrm{~A}$
 $c_{2} \xrightarrow{0.3} \mathrm{G} c_{4}$$c_{3} c_{3} \mathrm{G}$ |
| :--- | :--- | :--- | :--- |

- Each production has an associated probability
- Probabilities for productions with the same left-hand side sum to 1
- This regular grammar has a corresponding Markov chain model

Stochastic Context Free Grammars

 (a.k.a. Probabilistic Context Free Grammars)$$
\begin{aligned}
& \begin{array}{llll}
0.25 & 0.25 & 0.25 & 0.25
\end{array} \\
& s \rightarrow \mathrm{~A} w_{1} \mathrm{U}\left|\mathrm{C} w_{1} \mathrm{G}\right| \mathrm{G} w_{1} \mathrm{C} \mid \mathrm{U} w_{1} \mathrm{~A} \\
& \begin{array}{llll}
0.1 & 0.4 & 0.4 & 0.1
\end{array} \\
& w_{1} \rightarrow \mathrm{~A} w_{2} \mathrm{U}\left|\mathrm{C} w_{2} \mathrm{G}\right| \mathrm{G} w_{2} \mathrm{C} \mid \mathrm{U} w_{2} \mathrm{~A} \\
& \begin{array}{c|c|c|c}
0.25 & 0.25 & 0.25 & 0.25 \\
w_{2} \rightarrow \\
\mathrm{~A} w_{3} \mathrm{U} & \stackrel{0}{\mathrm{C}} w_{3} \mathrm{G} & \stackrel{\mathrm{G} w_{3} \mathrm{C}}{\mathrm{U}}{ }^{\mathrm{U}}{ }_{3} \mathrm{~A}
\end{array} \\
& 0.8 \\
& 0.2 \\
& w_{3} \rightarrow \mathrm{GAAA} \mid \mathrm{GCAA}
\end{aligned}
$$

Stochastic Grammars?

...the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term.

- Noam Chomsky
(famed linguist)
Every time I fire a linguist, the performance of the recognizer improves.
- Fred Jelinek
(former head of IBM speech recognition group)

Credit for pairing these quotes goes to Dan Jurafsky and James Martin, Speech and Language Processing

Three Key Questions

- How likely is a given sequence? the Inside algorithm
- What is the most probable parse for a given sequence?
the Cocke-Younger-Kasami (CYK) algorithm
- How can we learn the SCFG parameters given a grammar and a set of sequences?
the Inside-Outside algorithm

Chomsky Normal Form

- It is convenient to assume that our grammar is in Chomsky Normal Form; i.e. all productions are of the form:
$v \rightarrow y z \quad$ right hand side consists of two nonterminals
$v \rightarrow A \quad$ right hand side consists of a single terminal
- Any CFG can be put into Chomsky Normal Form

Converting a Grammar to CNF

$$
\begin{aligned}
& s \rightarrow G s C \\
& s \rightarrow G s \\
& s \rightarrow A A
\end{aligned}
$$

$$
\begin{aligned}
& s \rightarrow b_{G} p \\
& p \rightarrow s b_{C} \\
& s \rightarrow b_{G} s \\
& s \rightarrow b_{A} b_{A} \\
& b_{G} \rightarrow G \\
& b_{C} \rightarrow C \\
& b_{A} \rightarrow A
\end{aligned}
$$

Parameter Notation

- For productions of the form $v \rightarrow y z$, we'll denote the associated probability parameters

$$
t_{v}(y, z) \quad \text { transition }
$$

- For productions of the form $\quad v \rightarrow A$, we'll denote the associated probability parameters
$e_{v}(A) \quad$ emission

Determining the Likelihood of a Sequence: The Inside Algorithm

- Dynamic programming method, analogous to the Forward algorithm
- Involves filling in a 3D matrix

$$
\alpha(i, j, v)
$$

representing the probability of all parse subtrees rooted at nonterminal v for the subsequence from i to j

Determining the Likelihood of a Sequence: The Inside Algorithm

- $\alpha(i, j, v)$: the probability of all parse subtrees rooted at nonterminal v for the subsequence from i to j

Inside Calculation Example

$s \rightarrow b_{G} p$
$p \rightarrow s b_{C}$
$s \rightarrow b_{G} s$
$s \rightarrow b_{A} b_{A}$
$\alpha(2,6, s)=t_{s}\left(b_{G}, p\right) \alpha\left(2,2, b_{G}\right) \alpha(3,6, p)+$ $t_{s}\left(b_{G}, s\right) \alpha\left(2,2, b_{G}\right) \alpha(3,6, s)$
$b_{G} \rightarrow G$
$b_{C} \rightarrow C$
$b_{A} \rightarrow A$

Determining the Likelihood of a Sequence: The Inside Algorithm

$$
\alpha(i, j, v)=\sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=i}^{j-1} t_{v}(y, z) \alpha(i, k, y) \alpha(k+1, j, z)
$$

M is the number of nonterminals in the grammar

The Inside Algorithm

- Initialization (for $i=1$ to $L, v=1$ to M)

$$
\alpha(i, i, v)=e_{v}\left(x_{i}\right)
$$

- Iteration (for $i=L-1$ to $1, j=i+1$ to $L, v=1$ to M)

$$
\alpha(i, j, v)=\sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=i}^{j-1} t_{v}(y, z) \alpha(i, k, y) \alpha(k+1, j, z)
$$

- Termination

$$
\operatorname{Pr}(x)=\alpha(1, L, 1)
$$

Learning SCFG Parameters

- If we know the parse tree for each training sequence, learning the SCFG parameters is simple
- no hidden part of the problem during training
- count how often each parameter (i.e. production) is used
- normalize/smooth to get probabilities
- More commonly, there are many possible parse trees per sequence - we don't know which one is correct
- thus, use an EM approach (Inside-Outside)
- iteratively
- determine expected \# times each production is used
- consider all parses
- weight each by its probability
- set parameters to maximize likelihood given these counts

The Inside-Outside Algorithm

- We can learn the parameters of an SCFG from training sequences using an EM approach called Inside-Outside
- In the E-step, we determine
- the expected number of times each nonterminal is used in parses $c(v)$
- the expected number of times each production is used in parses

$$
\begin{aligned}
& c(v \rightarrow y z) \\
& c(v \rightarrow A)
\end{aligned}
$$

- In the M-step, we update our production probabilities

The Outside Algorithm

- $\beta(i, j, v)$: the probability of parse trees rooted at the start nonterminal, excluding the probability of all subtrees rooted at nonterminal v covering the subsequence from i to j

Outside Calculation Example

$$
\begin{gathered}
s \rightarrow b_{G} p \\
p \rightarrow s b_{C} \\
s \rightarrow b_{G} s \\
s \rightarrow b_{A} b_{A} \\
b_{G} \rightarrow G \\
b_{C} \rightarrow C \\
b_{A} \rightarrow A
\end{gathered}
$$

$$
\beta(2,6, s)=t_{p}\left(s, b_{C}\right) \alpha\left(7,7, b_{C}\right) \beta(2,7, p)
$$

The Outside Algorithm

- We can recursively calculate $\beta(i, j, v)$ from β values we've calculated for y
- The first case we consider is where v is used in productions of the form: $y \rightarrow z v$

The Outside Algorithm

- The second case we consider is where v is used in productions of the form: $y \rightarrow v z$

The Outside Algorithm

- Initialization

$$
\begin{array}{ll}
\beta(1, L, 1)=1 & \text { (the start } \text { nonterminal) } \\
\beta(1, L, v)=0 & \text { for } v=2 \text { to } M
\end{array}
$$

- Iteration (for $i=1$ to $L, j=L$ to $i, v=1$ to M)

$$
\begin{aligned}
\beta(i, j, v)= & \sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=1}^{i-1} t_{y}(z, v) \alpha(k, i-1, z) \beta(k, j, y)+ \\
& \sum_{y=1}^{M} \sum_{z=1}^{M} \sum_{k=j+1}^{L} t_{y}(v, z) \alpha(j+1, k, z) \beta(i, k, y)
\end{aligned}
$$

The Inside-Outside Algorithm

- We can learn the parameters of an SCFG from training sequences using an EM approach called Inside-Outside
- In the E-step, we determine
- the expected number of times each nonterminal is used in parses $c(v)$
- the expected number of times each production is used in parses

$$
\begin{aligned}
& c(v \rightarrow y z) \\
& c(v \rightarrow A)
\end{aligned}
$$

- In the M-step, we update our production probabilities

The Inside-Outside Algorithm

- The EM re-estimation equations (for 1 sequence) are:

$$
\begin{aligned}
\hat{e}_{v}(A) & =\frac{c(v \rightarrow A)}{c(v)}=\frac{\sum_{i x_{i}=A} \beta(i, i, v) e_{v}(A)}{\sum_{i=1}^{L} \sum_{j=i}^{L} \beta(i, j, v) \alpha(i, j, v)} \begin{array}{l}
\text { cases where } v \text { used } \\
\text { to generate } A
\end{array} \\
\hat{t}_{v}(y, z) & =\frac{c(v \rightarrow y z)}{c(v)} \\
& =\frac{\sum_{i=1}^{L-1} \sum_{j=i+1}^{L} \sum_{k=i}^{j-1} t_{v}(y, z) \beta(i, j, v) \alpha(i, k, y) \alpha(k+1, j, z)}{\sum_{i=1}^{L} \sum_{j=i}^{L} \beta(i, j, v) \alpha(i, j, v)}
\end{aligned}
$$

Finding the Most Likely Parse: The CYK Algorithm

- Involves filling in a 3D matrix

$$
\gamma(i, j, v)
$$

representing the most probable parse subtree rooted at nonterminal v for the subsequence from i to j

- and a matrix for the traceback

$$
\tau(i, j, v)
$$

storing information about the production at the top of this parse subtree

The CYK Algorithm

- Initialization (for $i=1$ to $L, v=1$ to M)

$$
\begin{aligned}
\gamma(i, i, v) & =\log e_{v}\left(x_{i}\right) \\
\tau(i, i, v) & =(0,0,0)
\end{aligned}
$$

- Iteration (for $i=1$ to $L-1, j=i+1$ to $L, v=1$ to M)

$$
\begin{aligned}
& \gamma(i, j, v)=\max \underset{k=i, \ldots j-1}{y, z}\left\{\gamma(i, k, y)+\gamma(k+1, j, z)+\log t_{v}(y, z)\right\} \\
& \tau(i, j, v)=\arg \max \underset{k=i, \ldots j-1}{y, z}\left\{\gamma(i, k, y)+\gamma(k+1, j, z)+\log t_{v}(y, z)\right\}
\end{aligned}
$$

- Termination

$$
\log P(x, \hat{\pi} \mid \theta)=\gamma(1, L, 1)
$$

The CYK Algorithm Traceback

- Initialization:
push ($1, L, 1$) on the stack
- Iteration:
pop $(i, j, v) \quad / /$ pop subsequence/nonterminal pair
$(y, z, k)=\tau(i, j, v) \quad / /$ get best production identified by CYK
if $(y, z, k)==(0,0,0) \quad / /$ indicating a leaf
attach x_{i} as the child of v
else
attach y, z to parse tree as children of v push(i,k,y)
$\operatorname{push}(k+1, j, z)$

Comparison of SCFG Algorithms to HMM Algorithms

	HMM algorithm	SCFG algorithm
optimal alignment	Viterbi	CYK
probability of sequence	forward	inside
EM parameter estimation	forward-backward	inside-outside
memory complexity	$O(L M)$	$O\left(L^{2} M\right)$
time complexity	$O\left(L M^{2}\right)$	$O\left(L^{3} M^{3}\right)$

