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Goals for Lecture

Key concepts

• Incorporating sequence signals into gene finding with 

HMMs

• Modeling durations with generalized HMMs

• Modeling conversation with pair HMMs

• Modern gene finding and genome annotation
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Sources of Evidence for Gene Finding

• Signals: the sequence signals (e.g. splice junctions) 
involved in gene expression

• Content: statistical properties that distinguish 
protein-coding DNA from non-coding DNA

• Conservation: signal and content properties that are 
conserved across related sequences (e.g. 
orthologous regions of the mouse and human 
genome)
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Eukaryotic Gene Structure
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Splice Signals Example

Figures from Yi Xing

donor sites acceptor sites

exon exon

-1-2-3 1 2 3 4 5 6

• There are significant dependencies among non-adjacent 
positions in donor splice signals

• Informative for inferring hidden state of HMM
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ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA

Parsing a DNA Sequence
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• The HMM Viterbi path represents a parse of a given 

sequence, predicts exons, acceptor sites, introns, etc.

Observed 

sequence

Hidden 

state

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA

5’UTR Exon IntronIntergenic

• How can we properly model the transitions from one 

state to another?
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Length Distributions of Introns/Exons

geometric dist.

provides good fit

Introns Initial exons

Internal exons Terminal exons

geometric dist.

provides poor fit
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• Semi-Markov models are well-motivated for some 

sequence elements (e.g. exons)

– Semi-Markov: explicitly model length duration of hidden 

states

– Also called generalized hidden Markov model

Duration Modeling in HMMs
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Each shape represents a functional unit 

of a gene or genomic region

Pairs of intron/exon units represent

the different ways an intron can interrupt

a coding sequence  (after 1st base in codon, 

after 2nd base or after 3rd base)

Complementary submodel

(not shown) detects genes on 

opposite DNA strand

The GENSCAN HMM for Eukaryotic 

Gene Finding [Burge & Karlin ‘97]
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ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA

Parsing a DNA Sequence

The Viterbi path represents 

a parse of a given sequence,

predicting exons, introns, etc.

GAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAAACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA

10



Comparative Algorithms

• Genes are among the most conserved elements in 

the genome

– use conservation to help infer locations of genes

• Some signals associated with genes are short and 

occur frequently in the genome

– use conservation to eliminate false candidate sites from 

consideration
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Pair Hidden Markov Models

• Each non-silent state emits one or a pair 
of characters

I: insert state

D: delete state

H: homology (match) state

Transition probabilities
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Pair HMM Paths are Alignments
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Generalized Pair HMMs

• Represent a parse π, as a sequence of states and a 
sequence of associated lengths for each input sequence
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may be gaps

in the sequencespair of duration 

times generated 

by hidden state

sequence of 

hidden states

14SLAM: Pachter et al. RECOMB 2001

pair of sequences 

generated by 

hidden state



Modern Genome Annotation

• RNA-Seq, mass spectrometry, and other technologies 

provide powerful information for genome annotation
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Modern Genome Annotation
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Yandell et al. Nature Reviews Genetics 2012



Modern Genome Annotation
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Mudge and Harrow Nature Reviews Genetics 2016

protein-coding genes, isoforms, 

translated regions

small RNAs

long non-coding RNAs

pseudogenes

promoters and 

enhancers


