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Goals for Lecture

Key concepts

 Incorporating sequence signals into gene finding with
HMMs

* Modeling durations with generalized HMMs
* Modeling conversation with pair HMMs
 Modern gene finding and genome annotation



Sources of Evidence for Gene Finding

 Signals: the sequence signals (e.g. splice junctions)
Involved in gene expression

« Content: statistical properties that distinguish
protein-coding DNA from non-coding DNA

« Conservation: signal and content properties that are
conserved across related sequences (e.g.
orthologous regions of the mouse and human
genome)



Eukaryotic Gene Structure
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Splice Signals Example

donor sites acceptor sites
5 splice site ¥ splice site
AA -
VO [ s 1 v 5 v 00 AN |5
3 211 2 3 45 6
Figures from Yi Xing
exon exon

« There are significant dependencies among non-adjacent
positions in donor splice signals

 Informative for inferring hidden state of HMM



Parsing a DNA Sequence

« The HMM Viterbi path represents a parse of a given
sequence, predicts exons, acceptor sites, introns, etc.

Hidden Intergenic  5’UTR Exon Intron
State

Observed
sequence

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA

 How can we properly model the transitions from one
state to another?



Length Distributions of Introns/Exons
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Figure from Burge & Karlin, Journal of Molecular Biology, 1997



Duration Modeling in HMMSs

« Semi-Markov models are well-motivated for some
sequence elements (e.g. exons)

— Semi-Markov: explicitly model length duration of hidden
states

— Also called generalized hidden Markov model



The GENSCAN HMM for Eukaryotic
Gene Finding [Burge & Karlin ‘97]
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Parsing a DNA Sequence
The Viterbi path represents @ @ e
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ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA
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Comparative Algorithms

« (Genes are among the most conserved elements in
the genome
— use conservation to help infer locations of genes

¢ Some signals associated with genes are short and
occur frequently in the genome

— use conservation to eliminate false candidate sites from
consideration
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Pair Hidden Markov Models

« Each non-silent state emits one or a pair
of characters

Transition probabilities \
l E H: homology (match) state

| Insert state

D: delete state
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Pair HMM Paths are Alignments

sequence 1. AAGCGC
sequence 2. ATGTC

hidden:BHHIIHDHE
AAGCG C
AT GTC

observed:
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Generalized Pair HMMs

« Represent a parse m«, as a sequence of states and a
sequence of associated lengths for each input sequence

sequence of
hidden states
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Modern Genome Annotation

 RNA-Seq, mass spectrometry, and other technologies
provide powerful information for genome annotation
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Modern Genome Annotation
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Modern Genome Annotation

protein-coding genes, isoforms,
translated regions
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