
Alignment of Long Sequences

BMI/CS 776

www.biostat.wisc.edu/bmi776/

Spring 2018

Anthony Gitter

gitter@biostat.wisc.edu

These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Mark Craven, Colin Dewey, and Anthony Gitter

http://creativecommons.org/licenses/by-nc/4.0/

Goals for Lecture

Key concepts

• how large-scale alignment differs from the simple case

• the canonical three step approach of large-scale aligners

• using suffix trees to find maximal unique matching

subsequences (MUMs)

If time permits

• using tries and threaded tries to find alignment seeds

• constrained dynamic programming to align

between/around anchors

• using sparse dynamic programming (DP) to find a chain

of local alignments

2

Pairwise Large-Scale Alignment:

Task Definition

Given

– a pair of large-scale sequences (e.g. chromosomes)

– a method for scoring the alignment (e.g. substitution
matrices, insertion/deletion parameters)

Do

– construct global alignment: identify all matching
positions between the two sequences

3

Large Scale Alignment Example
Mouse Chr6 vs. Human Chr12

Figure from: Delcher et al., Nucleic Acids Research 27, 1999 4

Why the Problem is Challenging

• Sequences too big to make O(n2) dynamic-

programming methods practical

• Long sequences are less likely to be colinear

because of rearrangements

– initially we’ll assume colinearity

– we’ll consider rearrangements in next lecture (or

never)

5

General Strategy

Figure from: Brudno et al. Genome Research, 2003

1. perform pattern

matching to find

seeds for global

alignment

2. find a good chain of

anchors

3. fill in remainder

with standard but

constrained

alignment method

6

The MUMmer System
Delcher et al., Nucleic Acids Research, 1999

Given: genomes A and B

1. find all maximal unique matching subsequences

(MUMs)

2. extract the longest possible set of matches that

occur in the same order in both genomes

3. close the gaps

7

Step 1: Finding Seeds in MUMmer

• Maximal unique match:

– occurs exactly once in both genomes A and B

– not contained in any longer MUM

• Key insight: a significantly long MUM is certain to be

part of the global alignment

mismatches

8

Suffix Trees

• Substring problem:

– given text S of length m

– preprocess S in O(m) time

– such that, given query string Q of length n, find

occurrence (if any) of Q in S in O(n) time

• Suffix trees solve this problem and others

9

Suffix Tree Definition

• A suffix tree T for a string S of length m is a tree
with the following properties:

– rooted and directed

– m leaves, labeled 1 to m

– each edge labeled by a substring of S

– concatenation of edge labels on path from root
to leaf i is suffix i of S (we will denote this by Si...m)

– each internal non-root node has at least two
children

– edges out of a node must begin with different
characters

key property

10

Suffixes

S = “banana$”

suffixes of S

$ (special character)

a$

na$

ana$

nana$

anana$

banana$

11

Suffix Tree Example

• S = “banana$”

• Add ‘$’ to end so that suffix

tree exists (no suffix is a

prefix of another suffix)

$

1

b
a
n
a
n
a
$

n
a

n
a

$$

a

n

n
a

$ $

2 34 5

a

$

6

7

12

• Assume we have suffix tree T and query string Q

• FindMatch(Q, T):

– follow (unique) path down from root of T according

to characters in Q

– if all of Q is found to be a prefix of such a path

return label of some leaf below this path

– else, return no match found

Solving the Substring Problem

13

Solving the Substring Problem

$

1

b
a
n
a
n
a
$

n
a

n
a

$$

a

n

n
a

$ $

2 34 5

a

$

6

7

Q = nan

return 3

$

1

b
a
n
a
n
a
$

n
a

n
a

$$

a

n

n
a

$ $

2
34 5

a

$

6

7

Q = anab

STOP

return no match found

14

MUMs and Generalized Suffix Trees
• Build one suffix tree for both genomes A and B

• Label each leaf node with genome it represents

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3A, 5

Genome A: ccacg#

Genome B: cct$

each internal node represents

a repeated sequence

each leaf represents a suffix

and its position in sequence15

MUMs and Suffix Trees

• Unique match: internal node with 2 children, leaf
nodes from different genomes

• But these matches are not necessarily maximal

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3A, 5

Genome A: ccacg#

Genome B: cct$

represents unique match

16

MUMs and Suffix Trees

• To identify maximal matches, can compare suffixes

following unique match nodes

Genome A: acat#
Genome B: acaa$

a ca
t#

ca t#t#

a$t#

A, 2A, 3

A, 4

A, 1

B, 4

$ a$

B, 3 B, 2

a$

B, 1

the suffixes following

these two match nodes

are the same; the left one

represents a longer match

(aca) 17

Using Suffix Trees to Find MUMs

• O(n) time to construct suffix tree for both sequences

(of lengths ≤ n)

• O(n) time to find MUMs - one scan of the tree (which

is O(n) in size)

• O(n) possible MUMs in contrast to O(n2) possible

exact matches

• Main parameter of approach: length of shortest MUM

that should be identified (20 – 50 bases)

18

Step 2: Chaining in MUMmer

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

• Sort MUMs according to position in genome A

• Solve variation of Longest Increasing Subsequence

(LIS) problem to find sequences in ascending order in

both genomes

19

Finding Longest Subsequence

• Unlike ordinary LIS problems, MUMmer takes into

account

– lengths of sequences represented by MUMs

– overlaps

• Requires time where k is number of MUMs)log(kkO

20

Recall: Three Main Steps of Large-

Scale Alignment

1. Pattern matching

to find seeds for

global alignment

2. Find a good chain

of anchors

3. Fill in with standard

but constrained

alignment

21

B
ru

d
n

o
et

 a
l.

G

en
o

m
e

R
es

ea
rc

h
,
2

0
0

3

1. Suffix trees to

obtain MUMs

2. LIS to find colinear

MUMs

3. Smith-Waterman

and recursive

MUMmer for gap

filling

General

MUMmer

Types of Gaps in a MUMmer

Alignment

Figure from: Delcher et al., Nucleic Acids Research 27, 1999 22

Step 3: Close the Gaps

• SNPs:

– between MUMs: trivial to detect

– otherwise: handle like repeats

• Insertions

– simple insertions: trivial to detect

– transpositions (subsequences that were deleted

from one location and inserted elsewhere): look

for out-of-sequence MUMs

23

Step 3: Close the Gaps

• Polymorphic regions

– short ones: align them with dynamic programming

method

– long ones: call MUMmer recursively with reduced

minimum MUM length

• Repeats

– detected by overlapping MUMs

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

24

MUMmer Performance

25
Figure from: Delcher et al. Nucleic Acids Research 27, 1999

FASTA on

1000 base

pair segments

MUMmer

MUMmer Performance

• Mycoplasma test case

• Suffix tree: 6.5s

• LIS: 0.02s

• Smith-Waterman: 116s

• FASTA baseline: many hours

26

Centre for Computing History

DEC Alpha 4100

http://www.computinghistory.org.uk/det/7797/Digital-AlphaServer-A4100/

Longevity of MUMmer

27

• Antimicrobial

Resistance

Identification By

Assembly (ARIBA)

• Identify

antimicrobial

resistance genes

from Illumina reads

Figure from: Hunt et al. bioRxiv 2017

https://doi.org/10.1101/118000

Longevity of MUMmer

28

• Whole genome alignment still an active area

of research

– Jain et al. 2018 (Mashmap2): “we were able to

map an error-corrected whole-genome NA12878

human assembly to the hg38 human reference

genome in about one minute total execution

time and < 4 GB memory using 8 CPU threads”

– Uses MUMmer as ground truth in evaluation

https://doi.org/10.1101/259986

Limitations of MUMmer

• MUMs are perfect matches, typically ≥ 20-50

base pairs

• Evolutionarily distant may not have sufficient

MUMs to anchor global alignment

• How can we tolerate minor variation in the

seeds?

29

LAGAN: Three Main Steps

1. Pattern matching

to find seeds for

global alignment

2. Find a good chain

of anchors

3. Fill in with standard

but constrained

alignment

30

B
ru

d
n

o
et

 a
l.

G

en
o

m
e

R
es

ea
rc

h
,
2

0
0

3

1. Threaded tries to

obtain seeds

2. Sparse dynamic

programming for

chaining

3. Dynamic

programming for

gap filling

General

LAGAN

Step 1: Finding Seeds in LAGAN

• Degenerate k-mers: matching k-long

sequences with a small number of mismatches

allowed

• By default, LAGAN uses 10-mers and allows 1

mismatch

cacg cgcgctacat acct

acta cgcggtacat cgta

31

Finding Seeds in LAGAN
• Example: a trie to represent all 3-mers of the sequence

gaaccgacct

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

• One sequence is used to build the trie

• The other sequence (the query) is “walked” through to

find matching k-mers
32

Allowing Degenerate Matches
• Suppose we’re allowing 1 base to mismatch in looking

for matches to the 3-mer acc; need to explore green

nodes

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

33

LAGAN Uses Threaded Tries
• In a threaded trie, each leaf for word w1...wk has a back

pointer to the node for w2...wk

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

34

Traversing a Threaded Trie
• Consider traversing the trie to find 3-mer matches for the

query sequence: accgt

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

• Usually requires following only two pointers to match against

the next k-mer, instead of traversing tree from root for each
35

Comparing MUMmer and LAGAN

36

B
a
b
o
o
n

C
h
im

p
a
n
z
e
e

M
o
u
s
e

R
a
t

C
o
w

P
ig

C
a
t

D
o
g

C
h
ic

k
e
n

Z
e
b
ra

fi
s
h

F
u
g
u

O
v
e
ra

ll

Exons 232 176 230 230 224 174 176 182 68 48 150 1914

MUMmer (%

human exons

covered by ≥

90%

alignment)

100 100 8 9 40 44 47 37 0 0 0 41

LAGAN (%

human exons

covered by ≥

90%

alignment)

100 100 100 100 99 100 100 99 99 88 77 98

Comparing MUMmer and LAGAN

1. Pattern matching

to find seeds for

global alignment

2. Find a good chain

of anchors

3. Fill in with standard

but constrained

alignment

37

B
ru

d
n

o
et

 a
l.

G

en
o

m
e

R
es

ea
rc

h
,
2

0
0

3

1. Suffix trees to

obtain MUMs

2. Longest

Increasing

Subsequence

3. Smith-Waterman,

recursive

MUMmer

MUMmer

1. k-mer trie to

obtain seeds

2. Spare dynamic

programming

3. Dynamic

programming

LAGAN

Multiple Whole Genome Alignment:

Task Definition

Given

– A set of n > 2 genomes (or other large-scale sequences)

Do

– Identify all corresponding positions between all genomes,
allowing for substitutions, insertions/deletions, and
rearrangements

38

Progressive Alignment

• Given a guide tree relating n

genomes

• Construct multiple alignment by

performing n-1 pairwise

alignments

39

human chimpanzee mouse ratalign pairs

of sequences

align multi-sequences

(alignments)

chickenalign multi-sequence

with sequence

40

Progressive Alignment:

MLAGAN Example

Progressive Alignment:

MLAGAN Example

Figure from: Brudno et al. Genome Research, 2003

1. anchors from X-Z and Y-Z

become anchors for X/Y-Z

2. overlapping anchors are

reweighted

3. LIS algorithm is used to

chain anchors

Suppose we’re aligning the multi-sequence X/Y with Z

41

Genome Rearrangements

a b c d e

a d c b e

inversion

x y

a b c d e

d e

a b c x y

translocation

• Can occur within a chromosome or across chromosomes

• Can have combinations of these events

ancestor
ancestor

extant species

extant species

42

Mercator: Rough Orthology Map

k-partite graph with edge weights

vertices = anchors, edges = sequence similarity

43

Refining the Map:

Finding Breakpoints

• Breakpoints: the positions at which genomic
rearrangements disrupt colinearity of segments

• Mercator finds breakpoints by using inference in an
undirected graphical model

44

The Breakpoint Graph
1 2 3 4

5 6 7 8

9 10 11 12

11

1065

4 7 12

9 3

8

2

1

some prefix of region 2 and some prefix of region 11

should be aligned 45

Comparing MLAGAN and Mercator

• MLAGAN

– Requires phylogenetic tree

– Greedy solution with local refinement

• Mercator

– Define probabilistic model to solve globally

– Inference is intractable, resort to

approximations

46

