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Goals for Lecture

Key concepts

• how large-scale alignment differs from the simple case

• the canonical three step approach of large-scale aligners

• using suffix trees to find maximal unique matching 

subsequences (MUMs)

If time permits

• using tries and threaded tries to find alignment seeds

• constrained dynamic programming to align 

between/around anchors

• using sparse dynamic programming (DP) to find a chain 

of local alignments
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Pairwise Large-Scale Alignment:

Task Definition

Given

– a pair of large-scale sequences (e.g. chromosomes)

– a method for scoring the alignment (e.g. substitution 
matrices, insertion/deletion parameters)

Do

– construct global alignment: identify all matching 
positions between the two sequences
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Large Scale Alignment Example
Mouse Chr6 vs. Human Chr12

Figure from: Delcher et al.,  Nucleic Acids Research 27, 1999 4



Why the Problem is Challenging

• Sequences too big to make O(n2) dynamic-

programming methods practical

• Long sequences are less likely to be colinear

because of rearrangements

– initially we’ll assume colinearity

– we’ll consider rearrangements in next lecture (or 

never)
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General Strategy

Figure from: Brudno et al.  Genome Research, 2003

1. perform pattern 

matching to find 

seeds for global 

alignment

2. find a good chain of 

anchors

3. fill in remainder 

with standard but 

constrained 

alignment method
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The MUMmer System
Delcher et al., Nucleic Acids Research, 1999

Given: genomes A and B

1. find all maximal unique matching subsequences 

(MUMs)

2. extract the longest possible set of matches that 

occur in the same order in both genomes

3. close the gaps
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Step 1: Finding Seeds in MUMmer

• Maximal unique match:

– occurs exactly once in both genomes A and B

– not contained in any longer MUM

• Key insight: a significantly long MUM is certain to be 

part of the global alignment

mismatches
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Suffix Trees

• Substring problem:

– given text S of length m

– preprocess S in O(m) time

– such that, given query string Q of length n, find 

occurrence (if any) of Q in S in O(n) time

• Suffix trees solve this problem and others
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Suffix Tree Definition

• A suffix tree T for a string S of length m is a tree 
with the following properties:

– rooted and directed

– m leaves, labeled 1 to m

– each edge labeled by a substring of S

– concatenation of edge labels on path from root 
to leaf i is suffix i of S (we will denote this by Si...m)

– each internal non-root node has at least two 
children

– edges out of a node must begin with different 
characters

key property
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Suffixes

S = “banana$”

suffixes of S

$ (special character)

a$

na$

ana$

nana$

anana$

banana$
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Suffix Tree Example

• S = “banana$”

• Add ‘$’ to end so that suffix 

tree exists (no suffix is a 

prefix of another suffix)

$

1

b
a
n
a
n
a
$

n
a

n
a

$$

a

n

n
a

$ $

2 34 5

a

$

6

7
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• Assume we have suffix tree T and query string Q

• FindMatch(Q, T):

– follow (unique) path down from root of T according 

to characters in Q

– if all of Q is found to be a prefix of such a path

return label of some leaf below this path

– else, return no match found

Solving the Substring Problem
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Solving the Substring Problem

$

1
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Q = nan

return 3

$

1

b
a
n
a
n
a
$

n
a

n
a

$$

a
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$ $
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34 5
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Q = anab

STOP

return no match found
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MUMs and Generalized Suffix Trees
• Build one suffix tree for both genomes A and B

• Label each leaf node with genome it represents

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3A, 5

Genome A:  ccacg#

Genome B:  cct$

each internal node represents 

a repeated sequence

each leaf represents a suffix

and its position in sequence15



MUMs and Suffix Trees

• Unique match: internal node with 2 children, leaf 
nodes from different genomes

• But these matches are not necessarily maximal

acg# c g# t$

acg# c g# t$

acg# t$

A, 3

A, 2

A, 1

A, 4

B, 1

B, 2

B, 3A, 5

Genome A:  ccacg#

Genome B:  cct$

represents unique match
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MUMs and Suffix Trees

• To identify maximal matches, can compare suffixes 

following unique match nodes 

Genome A:  acat#
Genome B:  acaa$

a ca
t#

ca t#t#

a$t#

A, 2A, 3

A, 4

A, 1

B, 4

$ a$

B, 3 B, 2

a$

B, 1

the suffixes following

these two match nodes 

are the same; the left one 

represents a longer match 

(aca) 17



Using Suffix Trees to Find MUMs

• O(n) time to construct suffix tree for both sequences 

(of lengths ≤ n)

• O(n) time to find MUMs - one scan of the tree (which 

is O(n) in size)

• O(n) possible MUMs in contrast to O(n2) possible 

exact matches

• Main parameter of approach: length of shortest MUM 

that should be identified (20 – 50 bases)
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Step 2: Chaining in MUMmer

Figure from: Delcher et al.,  Nucleic Acids Research 27, 1999

• Sort MUMs according to position in genome A

• Solve variation of Longest Increasing Subsequence

(LIS) problem to find sequences in ascending order in 

both genomes
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Finding Longest Subsequence

• Unlike ordinary LIS problems, MUMmer takes into 

account

– lengths of sequences represented by MUMs

– overlaps

• Requires                  time where k is number of MUMs)log( kkO
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Recall: Three Main Steps of Large-

Scale Alignment

1. Pattern matching 

to find seeds for 

global alignment

2. Find a good chain 

of anchors

3. Fill in with standard 

but constrained 

alignment
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1. Suffix trees to 

obtain MUMs

2. LIS to find colinear

MUMs

3. Smith-Waterman 

and recursive 

MUMmer for gap 

filling

General

MUMmer



Types of Gaps in a MUMmer

Alignment

Figure from: Delcher et al.,  Nucleic Acids Research 27, 1999 22



Step 3: Close the Gaps

• SNPs:

– between MUMs: trivial to detect

– otherwise: handle like repeats

• Insertions

– simple insertions: trivial to detect

– transpositions (subsequences that were deleted 

from one location and inserted elsewhere): look 

for out-of-sequence MUMs
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Step 3: Close the Gaps

• Polymorphic regions

– short ones: align them with dynamic programming 

method

– long ones: call MUMmer recursively with reduced 

minimum MUM length

• Repeats

– detected by overlapping MUMs

Figure from: Delcher et al.  Nucleic Acids Research 27, 1999
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MUMmer Performance

25
Figure from: Delcher et al.  Nucleic Acids Research 27, 1999

FASTA on 

1000 base 

pair segments

MUMmer



MUMmer Performance

• Mycoplasma test case

• Suffix tree: 6.5s

• LIS: 0.02s

• Smith-Waterman: 116s

• FASTA baseline: many hours
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Centre for Computing History

DEC Alpha 4100

http://www.computinghistory.org.uk/det/7797/Digital-AlphaServer-A4100/


Longevity of MUMmer

27

• Antimicrobial 

Resistance 

Identification By 

Assembly (ARIBA)

• Identify 

antimicrobial 

resistance genes 

from Illumina reads

Figure from: Hunt et al. bioRxiv 2017

https://doi.org/10.1101/118000


Longevity of MUMmer

28

• Whole genome alignment still an active area 

of research

– Jain et al. 2018 (Mashmap2): “we were able to 

map an error-corrected whole-genome NA12878 

human assembly to the hg38 human reference 

genome in about one minute total execution 

time and < 4 GB memory using 8 CPU threads”

– Uses MUMmer as ground truth in evaluation

https://doi.org/10.1101/259986


Limitations of MUMmer

• MUMs are perfect matches, typically ≥ 20-50 

base pairs

• Evolutionarily distant may not have sufficient 

MUMs to anchor global alignment

• How can we tolerate minor variation in the 

seeds?
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LAGAN: Three Main Steps

1. Pattern matching 

to find seeds for 

global alignment

2. Find a good chain 

of anchors

3. Fill in with standard 

but constrained 

alignment

30

B
ru

d
n

o
et

 a
l.

  
G

en
o

m
e 

R
es

ea
rc

h
, 
2

0
0

3

1. Threaded tries to 

obtain seeds

2. Sparse dynamic 

programming for 

chaining

3. Dynamic 

programming for 

gap filling

General

LAGAN



Step 1: Finding Seeds in LAGAN

• Degenerate k-mers: matching k-long 

sequences with a small number of mismatches 

allowed 

• By default, LAGAN uses 10-mers and allows 1 

mismatch

cacg cgcgctacat acct

acta cgcggtacat cgta
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Finding Seeds in LAGAN
• Example: a trie to represent all 3-mers of the sequence 

gaaccgacct

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

• One sequence is used to build the trie

• The other sequence (the query) is “walked” through to 

find matching k-mers
32



Allowing Degenerate Matches
• Suppose we’re allowing 1 base to mismatch in looking 

for matches to the 3-mer acc; need to explore green 

nodes

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c
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LAGAN Uses Threaded Tries
• In a threaded trie, each leaf for word w1...wk has a back 

pointer to the node for w2...wk

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

34



Traversing a Threaded Trie
• Consider traversing the trie to find 3-mer matches for the 

query sequence: accgt

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

• Usually requires following only two pointers to match against 

the next k-mer, instead of traversing tree from root for each
35



Comparing MUMmer and LAGAN
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Exons 232 176 230 230 224 174 176 182 68 48 150 1914

MUMmer (% 

human exons 

covered by ≥

90% 

alignment)

100 100 8 9 40 44 47 37 0 0 0 41

LAGAN (% 

human exons 

covered by ≥

90% 

alignment)

100 100 100 100 99 100 100 99 99 88 77 98



Comparing MUMmer and LAGAN

1. Pattern matching 

to find seeds for 

global alignment

2. Find a good chain 

of anchors

3. Fill in with standard 

but constrained 

alignment
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Multiple Whole Genome Alignment:

Task Definition

Given

– A set of n > 2 genomes (or other large-scale sequences)

Do

– Identify all corresponding positions between all genomes, 
allowing for substitutions, insertions/deletions, and 
rearrangements
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Progressive Alignment

• Given a guide tree relating n

genomes

• Construct multiple alignment by 

performing n-1 pairwise 

alignments

39



human chimpanzee mouse ratalign pairs

of sequences

align multi-sequences

(alignments)

chickenalign multi-sequence

with sequence

40

Progressive Alignment:

MLAGAN Example



Progressive Alignment:

MLAGAN Example

Figure from: Brudno et al.  Genome Research, 2003

1. anchors from X-Z and Y-Z 

become anchors for X/Y-Z

2. overlapping anchors are 

reweighted

3. LIS algorithm is used to 

chain anchors

Suppose we’re aligning the multi-sequence X/Y with Z
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Genome Rearrangements

a  b  c  d  e

a  d c b e

inversion

x  y

a  b  c  d  e

d  e

a  b  c  x  y

translocation

• Can occur within a chromosome or across chromosomes

• Can have combinations of these events

ancestor
ancestor

extant species

extant species
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Mercator: Rough Orthology Map

k-partite graph with edge weights

vertices = anchors, edges = sequence similarity

43



Refining the Map:

Finding Breakpoints

• Breakpoints: the positions at which genomic 
rearrangements disrupt colinearity of segments

• Mercator finds breakpoints by using inference in an 
undirected graphical model
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The Breakpoint Graph
1 2 3 4

5 6 7 8

9 10 11 12

11

1065

4 7 12

9 3

8

2

1

some prefix of region 2 and some prefix of region 11 

should be aligned 45



Comparing MLAGAN and Mercator

• MLAGAN

– Requires phylogenetic tree

– Greedy solution with local refinement

• Mercator

– Define probabilistic model to solve globally

– Inference is intractable, resort to 

approximations
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