Alignment of Long Sequences

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2018
Anthony Gitter
gitter@biostat.wisc.edu

These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Mark Craven, Colin Dewey, and Anthony Gitter

http://creativecommons.org/licenses/by-nc/4.0/

Goals for Lecture

Key concepts
* how large-scale alignment differs from the simple case
« the canonical three step approach of large-scale aligners

 using suffix trees to find maximal unique matching
subsequences (MUMS)

If time permits
 using tries and threaded tries to find alignment seeds

« constrained dynamic programming to align
between/around anchors

* using sparse dynamic programming (DP) to find a chain
of local alignments

Pairwise Large-Scale Alignment:
Task Definition

Given
— a pair of large-scale sequences (e.g. chromosomes)

— a method for scoring the alignment (e.g. substitution
matrices, insertion/deletion parameters)

Do

— construct global alignment: identify all matching
positions between the two sequences

Large Scale Alignment Example
Mouse Chr6 vs. Human Chrl2

250000
o,
& o L é"
o %20 o %‘3'@ ‘feﬂ" o§° @ o %o
& ° s @ o
o % oo @ 5] & @ o o o %
w 200000 | & i o o Ces o e o Vﬂm -
=] o o &
O L] o & o
g A @ e ¢ %o 0&'06
G b & o L]
E N o s @ ® 4y o & o g oe o
E 0% at o o o P o o
L+
= &
=, o & —
g 150000 [0 o 4 o o o o L 0% o ¥
3 o ° - o
E o o & o ©% ag " o
L]
P GO0 o, 07 & 0 0% s ‘0' ° o = @« o
[] oi}%o o 9 & o 9 & o & L] o
ol o @
© %o 0% o o ® o 8
g 100000 o i ¢ ¢ oo o -
g & o FX- - o
g e 2o o © & s °
e R I ® . @ @
E @ g s « © o @ @
= @ o8
ﬁ =] ° o] & ke o o
£ 50000 F °% o o & ogo o g% © E
w 2 %00 & & %, 4
& & k=]] o
' @ o s °
o o o8 5 °° ® e, ° » o o
o B < &
0t° ae fo o PP S *° F oo o
0 S0000 100000 150000 200000 250000

Position in U47924, human chromosome 12

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

Why the Problem is Challenging

« Sequences too big to make O(n?) dynamic-
programming methods practical

* Long sequences are less likely to be colinear
because of rearrangements

— initially we’ll assume colinearity

— we'll consider rearrangements in next lecture (or
never)

perform pattern
matching to find
seeds for global
alignment

General Strategy

Figure from: Brudno et al. Genome Research, 2003

AN SN
u“\\\, .,
AN
N R
NN

2.

find a good chain of
anchors

3.

fill iIn remainder
with standard but
constrained
alignment method

The MUMmMmer System

Delcher et al., Nucleic Acids Research, 1999

Given: genomes 4 and B

1. find all maximal unique matching subsequences
(MUMS)

2. extract the longest possible set of matches that
occur in the same order in both genomes

3. close the gaps

Step 1: Finding Seeds in MUMmer

« Maximal unigue match:
— occurs exactly once in both genomes 4 and B
— not contained in any longer MUM

Genome A: tcgatcGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAcgactta
Genome B: gcattaGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAtccagag

mismatches

« Key insight: a significantly long MUM is certain to be
part of the global alignment

Suffix Trees

* Substring problem:
— given text S of length m
— preprocess S in O(m) time

— such that, given query string O of length #, find
occurrence (if any) of O in S'in O(n) time

« Suffix trees solve this problem and others

key property

Suffix Tree Definition

« A suffix tree T for a string S of length m is a tree
with the following properties:

rooted and directed
m leaves, labeled 1 to m
each edge labeled by a substring of S

concatenation of edge labels on path from root
to leaf i is suffix i of S (we will denote this by S;._»)

each internal non-root node has at least two
children

edges out of a node must begin with different
characters

10

S = “panana$”
suffixes of S
$
a$
na$
ana$
nana$
anana$
banana$

Suffixes

(special character)

11

Suffix Tree Example

S = ‘panana$”

Add ‘S’ to end so that suffix A,
tree exists (no suffix is a
prefix of another suffix)

12

Solving the Substring Problem

« Assume we have suffix tree T"and query string O
* FindMatch(Q, 7):

follow (unique) path down from root of 7" according
to characters in O

If all of O Is found to be a prefix of such a path
return label of some leaf below this path
else, return no match found

13

Solving the Substring Problem

¢ = nan O = anab

‘0
’0
*

&

v '
© o O © @ o O ©
6 1 6 1

return 3 return no match found

14

MUMs and Generalized Suffix Trees

« Build one suffix tree for both genomes 4 and B
« Label each leaf node with genome it represents

Genome A: ccacg# each internal node represents
a repeated sequence

Genome B: cct$ '[

acgi# g# t$

A3 S A B, 3
acg# c o7 t$
Azl C) A4 B, 2
acg# t$
Al B,1 each leaf represents a suffix

15 and its position in sequence

MUMs and Suffix Trees

 Unigue match: internal node with 2 children, leaf
nodes from different genomes

« But these matches are not necessarily maximal

Genome A: ccacg#
Genome B: cct$

acg#

B, 1

B, 3

represents unigue match

16

MUMs and Suffix Trees

« To identify maximal matches, can compare suffixes

following unigue match nodes

Genome A: acat#
Genome B: acaa$

Al

B, 2

B, 1

the suffixes following

these two match nodes

are the same; the left one
represents a longer match
(aca) 17

Using Suffix Trees to Find MUMS

« O(n) time to construct suffix tree for both sequences
(of lengths < n)

 O(n) time to find MUMSs - one scan of the tree (which
IS O(n) In size)

e O(n) possible MUMs in contrast to O(n?) possible
exact matches

« Main parameter of approach: length of shortest MUM
that should be identified (20 — 50 bases)

18

Step 2: Chaining in MUMmer

« Sort MUMs according to position in genome A

« Solve variation of Longest Increasing Subsequence
(LIS) problem to find sequences in ascending order in
both genomes

Genome A:])2/ /4 5>§6/?
Genome B: 3 y 6 - 5

Genome A:]

Genome B:

Figure from: Delcher et al., Nucleic Acids Research 27, 1999
19

Finding Longest Subseguence

« Unlike ordinary LIS problems, MUMmer takes into
account

— lengths of sequences represented by MUMs
— overlaps
* Requires O(klogk) time where k is number of MUMs

20

Recall: Three Main Steps of Large-

Scale Alignmernr

t

N
\\
N\

General

1.

MUMmer

1.

Pattern matching 2.
to find seeds for
global alignment

Suffix trees to
obtain MUMSs

Find a good chain 3.
of anchors

LIS to find colinear 3.
MUMs

Brudno et al. Genome Research, 2003

Fill in with standard
but constrained
alignment

Smith-Waterman
and recursive
MUMmer for gap

filling .

Types of Gaps in a MUMmMmer
Alignment

. SNP: exactly one base (indicated by ~) differs between the two sequences. It is
surrounded by exact-match sequence.

Genome A: cgtcatgggegttegtegttg
Genome B: cgtcatgggecattcgtegttg

. Insertion: a sequence that occurs in one genome but not the other.

Genome A: cggggtaaccge. cctggteggg
Genome B: cggggtaaccgegttgeteggggtaaccgeectggtcgeg

P e e e e e e e R T

3. Highly polymorphic region: many mutations in a short region.

Genome A: ccgectegeetgg. getggegeecgetce
Genome B: ccgcctegecagttgaccgegeccgetce

- - -

. Repeat sequence: the repeat is shown in uppercase. Note that the first copy of
the repeat in Genome B is imperfect, containing one mismatch to the other three
identical copies.

Genome A: c¢TGGGTGGGACAACGTaaaaaaaaaTGGGTGGGACAACGTc
Genome B: aTGGGTGGGGCgACGTgeegegegeTGGGTGGGACAACGTa

Figure from: Delcher et al., Nucleic Acids Research 27, 1999

22

Step 3: Close the Gaps

SNPs:

— between MUMSs: trivial to detect
— otherwise: handle like repeats
Insertions

— simple insertions: trivial to detect

— transpositions (subsequences that were deleted
from one location and inserted elsewhere): look
for out-of-sequence MUMSs

23

Step 3: Close the Gaps

« Polymorphic regions
— short ones: align them with dynamic programming
method

— long ones: call MUMmer recursively with reduced
minimum MUM length

 Repeats
— detected by overlapping MUMSs

Genome A: uniqueAAGGhAGGhAGGSequence
Genome B: [uniqueAAGGAAGG] .. .sequence
| | |
Position: 0 10 20

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

FASTA on
1000 base
pair segments

MUMmMmer

Position in M. genitalium

Position in M. genitalium

M

600000
500000
400000
300000
200000

100000

600000

500000

[B
g 8
g8 8

UMmer Performance

-]
o o o
¢ £ e o o0 - ® o
- o] A Y © & ° 00 -
e o @ o ¢ @ o
% o ° & < o &
& o ° "" ° © 8 2% op o
[/ b ¢ ° & i
S < @ > @
| o @ ° ¥ o 3 & ° & i
& / -
¢ ° ° @
@ ” o
_0' . < FS A4]
& @
” 7 s ° o ¢ % ce °
- > p
= o o ao ° o ‘o
8 °© ° ° < © o PP®
1 . 1 1 1 1 i g o | & b
0 100000 200000 300000 400000 500000 600000 700000 800000 900000
Pasition in M. pneumoniae
L] T T T T 1 1 T
”
s
o /
» ﬂ@&o N
L & °/ .
o
_, o - |
/ & o
- - n
o 4
1 1 1 ! 1 I M 1 1
0 100000 200000 300000 400000 500000 600000 700000 800000 900000

Position in M. pneumoniae

Figure from: Delcher et al. Nucleic Acids Research 27, 1999

25

MUMmer Performance

DEC Alpha 4100
Mycoplasma test case |

Suffix tree: 6.5s
LIS: 0.02s
Smith-Waterman: 116s

FASTA baseline: many hours

Centre for Computing History

26

http://www.computinghistory.org.uk/det/7797/Digital-AlphaServer-A4100/

Longevity of MUMmMmer

——
=== >) => (¢)
. : bl d find closest *
Antimicrobial ?::g;n an% Tni‘fgf reference .
Resistance (fermi-lite) (nucmer) ‘]
Identification By
Assembly (ARIBA)

map reads to assembly (Bowtie2), S ™ S

: and identify variants (SAMIOOIS) = s mi ™ i i e
|dent|fy - —- -

antimicrobial
_ compare assembly and closest reference,
resistance genes and identify variants (MUMmer)

from lllumina reads [)

Figure from: Hunt et al. bioRxiv 2017

27

https://doi.org/10.1101/118000

Longevity of MUMmMmer

« Whole genome alignment still an active area
of research

— Jain et al. 2018 (Mashmap?2): “we were able to
map an error-corrected whole-genome NA12878
human assembly to the hg38 human reference
genome in about one minute total execution
time and <4 GB memory using 8 CPU threads”

— Uses MUMmer as ground truth in evaluation

28

https://doi.org/10.1101/259986

Limitations of MUMmMmer

« MUMSs are perfect matches, typically = 20-50
base pairs

« Evolutionarily distant may not have sufficient
MUMSs to anchor global alignment

e How can we tolerate minor variation in the
seeds?

29

LAGAN: Three Main Steps

DN
N N
N
\ JN

General

1.

LAGAN

Pattern matching
to find seeds for
global alignment

Threaded tries to
obtain seeds

2. Find a good chain 3.
of anchors

Brudno et al. Genome Research, 2003

Fill in with standard
but constrained
alignment

30

Step 1: Finding Seeds in LAGAN

* Degenerate k-mers: matching k-long
sequences with a small number of mismatches
allowed

« By default, LAGAN uses 10-mers and allows 1
mismatch

cacg|cgcgcetacat|acct
acta|cgcggtacat|cgta

31

Finding Seeds in LAGAN

« Example: a trie to represent all 3-mers of the sequence
gaaccgacct

2 3, 7 4 8 5 1 6

* One sequence is used to build the trie

e The other sequence (the query) is “walked” through to
find matching k-mers

32

Allowing Degenerate Matches

e Suppose we're allowing 1 base to mismatch in looking
for matches to the 3-mer acc; need to explore green
nodes

33

LAGAN Uses Threaded Tries

 In a threaded trie, each leaf for word W,...W, has a back
pointer to the node for W,...W,

a C g
(2 @ @
a C g a
@ () ((> (O
C C g t a a C
2 3,7 8 S 1 6

34

Traversing a Threaded Trie

e Consider traversing the trie to find 3-mer matches for the
guery seguence: accgt

a C
“
C C g
3,7 4
\

« Usually requires following only two pointers to match against

the next k-mer, instead of traversing tree from root for each
35

Comparing MUMmer and LAGAN

]
N
c % c ﬁ —
S| E| & Y gl%| 5| T
T c o & o 2| © S || 8| B g
m O = a4 O o O A | O| N| LWL O
Exons 232 |176 | 230 {230 |224 |174 | 176 |182 |68 |48 | 150 | 1914
MUMmer (% 100 | 100 |8 9 40 (44 |47 |37 |0 |0 |O 41
human exons
covered by =
90%
alignment)
LAGAN (% 100 {100 | 100 |100 (99 |100 |[100 |99 (99 |88 |77 |98

human exons
covered by =
90%
alignment)

36

Comparing MUMmer and LAGAN

MUMmer

LAGAN

DN
N N
N
\ NN

AN SN
-
"4\\
. N
N \

Brudno et al. Genome Research, 2003

Pattern matching 2.

to find seeds for
global alignment

Suffix trees to 2.
obtain MUMSs
k-mer trie to 2.

obtain seeds

Find a good chain
of anchors

Longest
Increasing
Subsequence

Spare dynamic
programming

3.

Fill in with standard
but constrained
alignment

Smith-Waterman,
recursive
MUMmMmer

Dynamic

programming -

Multiple Whole Genome Alignment:
Task Definition

Given
— A set of n > 2 genomes (or other large-scale sequences)

Do

— ldentify all corresponding positions between all genomes,
allowing for substitutions, insertions/deletions, and
rearrangements

38

Progressive Alignment

(a) Guide tree

« Given a guide tree relating n

genomes

.
e Construct multiple alignmentby # ® ¢ B & F G

performing n-1 pairwise
alignments

(b) Sequence addition order

Step 1

Step 2

Step 3

Step 4

Step 5

: S —
o
H | J K
A+B E+F |+ J
| AB + C} EF + G I+ K
ABC + D EFG + H
ABCD + EFGH
| ABCDEFGH + lIK

39

Progressive Alignment:
MLAGAN Example

align pairs human chimpanzee mouse rat
(¢ J (¢ J
of sequences Y Y
allgn multi-sequences o P
(alignments) g
i i chicken
align multi-sequence o 5

with sequence Y

40

1.

Progressive Alignment:
MLAGAN Example

Suppose we're aligning the multi-sequence X/Y with Z

anchors from X-Z and Y-Z

X
become anchors for X/Y-Z 7 2 il ?

overlapping anchors are
reweighted

LIS algorithm is used to
chain anchors

Figure from: Brudno et al. Genome Research, 2003

41

Genome Rearrangements

ancestor
ancestor
abcde i;ﬁu..-----
R () G
abcde
1L
extant species adchb e | ﬂ
——) —— extant species
inversion d—e.—
abcxy
)

translocation

« Can occur within a chromosome or across chromosomes
« Can have combinations of these events

42

Mercator: Rough Orthology Map

k-partite graph with edge weights

vertices = anchors, edges = sequence similarity

IOHIOHONON(O)))

43

Refining the Map:
Finding Breakpoints

« Breakpoints: the positions at which genomic
rearrangements disrupt colinearity of segments

_ D

« Mercator finds breakpoints by using inference in an
undirected graphical model

44

The Breakpoint Graph

1 2 3 4
= (I=5>5 C =9)
S 6 7 8
C=T O C 1= =13
9 10 11 12
= CI=5 =1

O?\ @

@@5 @

some prefix of region 2 and some prefix of region 11
should be aligned

45

Comparing MLAGAN and Mercator

« MLAGAN
— Requires phylogenetic tree
— Greedy solution with local refinement

* Mercator
— Define probabilistic model to solve globally

— Inference Is intractable, resort to
approximations

46

