Learning Sequence Motif Models Using Expectation Maximization (EM)

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2018
Anthony Gitter
gitter@biostat.wisc.edu

Goals for Lecture

Key concepts

- the motif finding problem
- using EM to address the motif-finding problem
- the OOPS and ZOOPS models

Sequence Motifs

- What is a sequence motif?
- a sequence pattern of biological significance
- Examples
- DNA sequences corresponding to protein binding sites
- protein sequences corresponding to common functions or conserved pieces of structure

Sequence Motifs Example

CAP-binding motif model based on 59 binding sites in E.coli
helix-turn-helix motif model based on 100 aligned protein sequences

The Motif Model Learning Task

given: a set of sequences that are thought to contain occurrences of an unknown motif of interest
do:

- infer a model of the motif
- predict the locations of the motif occurrences in the given sequences

Why is this important?

- To further our understanding of which regions of sequences are "functional"
- DNA: biochemical mechanisms by which the expression of genes are regulated
- Proteins: which regions of proteins interface with other molecules (e.g., DNA binding sites)
- Mutations in these regions may be significant

Motifs and Profile Matrices (a.k.a. Position Weight Matrices)

- Given a set of aligned sequences, it is straightforward to construct a profile matrix characterizing a motif of interest

- Each element represents the probability of given character at a specified position

Sequence Logos

	1	2	3	4	5	6	7	8
A	0.1	0.3	0.1	0.2	0.2	0.4	0.3	0.1
C	0.5	0.2	0.1	0.1	0.6	0.1	0.2	0.7
G	0.2	0.2	0.6	0.5	0.1	0.2	0.2	0.1
T	0.2	0.3	0.2	0.2	0.1	0.3	0.3	0.1
	\square							

frequency logo

N

information content logo

Motifs and Profile Matrices

- How can we construct the profile if the sequences aren't aligned?
- In the typical case we don't know what the motif looks like.

Unaligned Sequence Example

- ChIP-chip experiment tells which probes are bound (though this protocol has been replaced by ChIP-seq)

The Expectation-Maximization (EM) Approach

[Lawrence \& Reilly, 1990; Bailey \& Elkan, 1993, 1994, 1995]

- EM is a family of algorithms for learning probabilistic models in problems that involve hidden state
- In our problem, the hidden state is where the motif starts in each training sequence

Overview of EM

- Method for finding the maximum likelihood (ML) parameters (θ) for a model (M) and data (D)

$$
\theta_{M L}=\underset{\theta}{\operatorname{argmax}} P(D \mid \theta, M)
$$

- Useful when
- it is difficult to optimize $P(D \mid \theta)$ directly
- likelihood can be decomposed by the introduction of hidden information (Z)

$$
P(D \mid \theta)=\sum_{Z} P(D, Z \mid \theta)
$$

- and it is easy to optimize the function (with respect to θ):

$$
Q\left(\theta \mid \theta^{t}\right)=\sum_{Z} P\left(Z \mid D, \theta^{t}\right) \log P(D, Z \mid \theta)
$$

Applying EM to the Motif Finding Problem

- First define the probabilistic model and likelihood function $P(D \mid \theta)$
- Identify the hidden variables (Z)
- In this application, they are the locations of the motifs
- Write out the Expectation (E) step
- Compute the expected values of the hidden variables given current parameter values
- Write out the Maximization (M) step
- Determine the parameters that maximize the Q function, given the expected values of the hidden variables

Representing Motifs in MEME

- MEME: Multiple EM for Motif Elicitation
- A motif is
- assumed to have a fixed width, W
- represented by a matrix of probabilities: $p_{c, k}$ represents the probability of character c in column k
- Also represent the "background" (i.e. sequence outside the motif): $p_{c, 0}$ represents the probability of character c in the background
- Data D is a collection of sequences, denoted X

Representing Motifs in MEME

- Example: a motif model of length 3

$$
p=\begin{array}{rrrrr}
& 0 & 1 & 2 & 3 \\
\text { A } & 0.25 & 0.1 & 0.5 & 0.2 \\
\text { C } & 0.25 & 0.4 & 0.2 & 0.1 \\
\text { G } & 0.25 & 0.3 & 0.1 & 0.6 \\
\text { T } & \underbrace{0.25}_{\text {background }} & \text { motif positions }
\end{array}
$$

Representing Motif Starting Positions in MEME

- The element $Z_{i, j}$ of the matrix Z is an indicator random variable that takes value 1 if the motif starts in position j in sequence i (and takes value 0 otherwise)
- Example: given DNA sequences where $L=6$ and $W=3$
- Possible starting positions $m=L-W+1$

$$
Z=
$$

	1	2	3	4
seq1	0	0	1	0
seq2	1	0	0	0
seq3	0	0	0	1
seq4	0	1	0	0

Probability of a Sequence Given a Motif Starting Position

$$
P\left(X_{i} \mid Z_{i, j}=1, p\right)=\underbrace{\prod_{k=1}^{j-1} p_{c_{k}, 0}}_{\text {before motif }} \underbrace{\prod_{k=j}^{j+W-1} p_{c_{k}, k-j+1}}_{\text {motif }} \underbrace{\prod_{k=j+W}^{L} p_{c_{k}, 0}}_{\text {after motif }}
$$

X_{i} is the i th sequence
$Z_{i, j}$ is 1 if motif starts at position j in sequence i
c_{k} is the character at position k in sequence i

Sequence Probability Example

$$
\begin{aligned}
& X_{i}=\mathrm{G} \mathrm{C} \text { T G T A G } \\
& p=\begin{array}{rrrrr}
& 0 & 1 & 2 & 3 \\
\text { A } & 0.25 & 0.1 & 0.5 & 0.2 \\
\text { C } & 0.25 & 0.4 & 0.2 & 0.1 \\
\text { G } & 0.25 & 0.3 & 0.1 & 0.6 \\
\text { T } & 0.25 & 0.2 & 0.2 & 0.1
\end{array} \\
& P\left(X_{i} \mid Z_{i, 3}=1, p\right)= \\
& \begin{array}{l}
p_{\mathrm{G}, 0} \times p_{\mathrm{C}, 0} \times p_{\mathrm{T}, 1} \times p_{\mathrm{G}, 2} \times p_{\mathrm{T}, 3} \times p_{\mathrm{A}, 0} \times p_{\mathrm{G}, 0}= \\
0.25 \times 0.25 \times 0.2 \times 0.1 \times 0.1 \times 0.25 \times 0.25
\end{array}
\end{aligned}
$$

Likelihood Function

- EM (indirectly) optimizes log likelihood of observed data

$$
\log P(X \mid p)
$$

- M step requires joint log likelihood

$$
\begin{aligned}
\log P(X, Z & \mid p)=\log \prod_{i} P\left(X_{i}, Z_{i} \mid p\right) \\
& =\log \prod_{i} P\left(X_{i} \mid Z_{i}, p\right) P\left(Z_{i} \mid p\right) \\
& =\log \prod_{i} \frac{1}{m} \prod_{j} P\left(X_{i} \mid Z_{i, j}=1, p\right)^{Z_{i, j}} \\
& =\sum_{i} \sum_{j} Z_{i, j} \log P\left(X_{i} \mid Z_{i, j}=1, p\right)+n \log \frac{1}{m}
\end{aligned}
$$

See Section IV.C of Bailey's dissertation for details

Basic EM Approach

given: length parameter W, training set of sequences
$\mathrm{t}=0$
set initial values for $p^{(0)}$
do
$++t$
re-estimate $Z^{(t)}$ from $p^{(t-1)} \quad$ (E-step)
re-estimate $p^{(\mathrm{t})}$ from $Z^{(\mathrm{t})} \quad$ (M-step)
until change in $p^{(\mathrm{t})}<\varepsilon$ (or change in likelihood is $<\varepsilon$)
return: $p^{(\mathrm{t})}, Z^{(\mathrm{t})}$

Expected Starting Positions

- During the E-step, we compute the expected values of Z given X and $p^{(t-1)}$
- We denote these expected values $Z^{(t)}=E\left[Z \mid X, p^{(t-1)}\right]$
- For example:

indicator random variable
expected value at iteration t

$$
Z^{(t)}=\begin{array}{ll}
\text { seq1 } & 0.1 \\
\text { seq2 } & 0.4 \\
\text { seq } & 0.3
\end{array}
$$

0.1
0.2
0.6
0.2
0.10 .3
0.1
0.5
0.1

The E-step: Computing $Z^{(t)}$

- To estimate the starting positions in Z at step t

$$
Z_{i, j}^{(t)}=\frac{P\left(X_{i} \mid Z_{i, j}=1, p^{(t-1)}\right) P\left(Z_{i, j}=1\right)}{\sum_{k=1}^{m} P\left(X_{i} \mid Z_{i, k}=1, p^{(t-1)}\right) P\left(Z_{i, k}=1\right)}
$$

- This comes from Bayes' rule applied to

$$
P\left(Z_{i, j}=1 \mid X_{i}, p^{(t-1)}\right)
$$

The E-step: Computing $Z^{(t)}$

- Assume that it is equally likely that the motif will start in any position

$$
P\left(Z_{i, j}=1\right)=\frac{1}{m}
$$

$$
Z_{i, j}^{(t)}=\frac{P\left(X_{i} \mid Z_{i, j}=1, p^{(t-1)}\right)}{\left.\sum_{k=1}^{m} P\left(X_{i} \mid Z_{i, k}=1, p^{(t-1)}\right)-1\right)}
$$

Example: Computing $Z^{(t)}$

$$
Z^{(t)}{ }_{i, 1} \propto P\left(X_{i} \mid Z_{i, 1}=1, p^{(t-1)}\right)=0.3 \times 0.2 \times 0.1 \times 0.25 \times 0.25 \times 0.25 \times 0.25
$$

$$
Z^{(t)}{ }_{i, 2} \propto P\left(X_{i} \mid Z_{i, 2}=1, p^{(t-1)}\right)=0.25 \times 0.4 \times 0.2 \times 0.6 \times 0.25 \times 0.25 \times 0.25
$$

- Then normalize so that $\sum_{j=1}^{m} Z^{(t)}{ }_{i, j}=1$

$$
\begin{aligned}
& X_{i}=\mathrm{G} \mathbf{C} \mathbf{T} \mathrm{G} \mathrm{~A} \mathbf{G} \\
& p^{(t-1)}=\begin{array}{rrrrr}
& 0 & 1 & 2 & 3 \\
\text { A } & 0.25 & 0.1 & 0.5 & 0.2 \\
\mathrm{C} & 0.25 & 0.4 & 0.2 & 0.1 \\
\mathrm{~T} & 0.25 & 0.3 & 0.1 & 0.6 \\
\end{array}
\end{aligned}
$$

The M-step: Estimating p

- Recall $p_{c, k}$ represents the probability of character c in position k; values for $k=0$ represent the background

Example: Estimating p

A C A G C A

$$
Z^{(t)}{ }_{1,1}=0.1, Z^{(t)}{ }_{1,2}=0.7, Z^{(t)}{ }_{1,3}=0.1, Z^{(t)}{ }_{1,4}=0.1
$$

A G G C A G

$$
Z^{(t)}{ }_{2,1}=0.4, Z^{(t)}{ }_{2,2}=0.1, Z^{(t)}{ }_{2,3}=0.1, Z^{(t)}{ }_{2,4}=0.4
$$

T C A G T C
$Z^{(t)}{ }_{3,1}=0.2, Z^{(t)}{ }_{3,2}=0.6, Z^{(t)}{ }_{3,3}=0.1, Z^{(t)}{ }_{3,4}=0.1$

$$
\begin{aligned}
p^{(t)}{ }_{\mathrm{A}, 1} & =\frac{\left.Z^{(t)}{ }_{1,1}+Z^{(t)}\right)_{1,3}+Z^{(t)}{ }_{2,1}+Z^{(t)}{ }_{3,3}+1}{Z^{(t)}{ }_{1,2} \ldots+Z^{(t)}{ }_{3,3}+Z^{(t)}{ }_{3,4}+4} \\
p^{(t)}{ }_{\mathrm{C}, 2} & =\frac{Z^{(t)}{ }_{1,1}+Z^{(t)}{ }_{1,4}^{(t)}{ }_{1,1}+Z^{(t)}{ }_{2,3}^{(t)}+Z_{1,2}^{(t)} \ldots+Z_{3,1}^{(t)}{ }_{3,3}+Z^{(t)}{ }_{3,4}+4}{}
\end{aligned}
$$

The ZOOPS Model

- The approach as we've outlined it, assumes that each sequence has exactly one motif occurrence per sequence; this is the OOPS model
- The ZOOPS model assumes zero or one occurrences per sequence

E-step in the ZOOPS Model

- We need to consider another alternative: the i th sequence doesn't contain the motif
- We add another parameter (and its relative)
- prior probability of a sequence containing a motif

$$
\lambda=\frac{\gamma}{(L-W+1)}=\frac{\gamma}{m}
$$

- prior probability that any position in a sequence is the start of a motif

E-step in the ZOOPS Model

$$
Z_{i, j}^{(t)}=\frac{P\left(X_{i} \mid Z_{i, j}=1, p^{(t-1)}\right) \lambda^{(t-1)}}{P\left(X_{i} \mid Q_{i}=0, p^{(t-1)}\right)\left(1-\gamma^{(t-1)}\right)+\sum_{k=1}^{m} P\left(X_{i} \mid Z_{i, k}=1, p^{(t-1)}\right) \lambda^{(t-1)}}
$$

- Q_{i} is a random variable for which $Q_{i}=1$ if sequence X_{i} contains a motif, $Q_{i}=0$ otherwise

$$
\begin{gathered}
Q_{i}=\sum_{j=1}^{m} Z_{i, j} \\
P\left(X_{i} \mid Q_{i}=0, p^{(t-1)}\right)=\prod_{j=1}^{L} p_{c, 0}^{(t-1)} \quad P\left(Q_{i}=0\right)=1-\gamma^{(t-1)}
\end{gathered}
$$

M-step in the ZOOPS Model

- Update p same as before
- Update γ as follows:

$$
\gamma^{(t)} \equiv m \lambda^{(t)}=\frac{1}{n} \sum_{i=1}^{n} Q_{i}^{(t)}
$$

Extensions to the Basic EM Approach in MEME

- Varying the approach (TCM model) to assume zero or more motif occurrences per sequence
- Choosing the width of the motif
- Finding multiple motifs in a group of sequences
\checkmark Choosing good starting points for the parameters
\checkmark Using background knowledge to bias the parameters

Starting Points in MEME

- EM is susceptible to local maxima, so it's a good idea to try multiple starting points
- Insight: motif must be similar to some subsequence in data set
- For every distinct subsequence of length W in the training set
- derive an initial p matrix from this subsequence
- run EM for 1 iteration
- Choose motif model (i.e. p matrix) with highest likelihood
- Run EM to convergence

Using Subsequences as Starting Points for EM

- Set values matching letters in the subsequence to some value π
- Set other values to $(1-\pi) /(M-1)$ where M is the length of the alphabet
- Example: for the subsequence TAT with $\pi=0.7$

$$
P=\begin{array}{rrrr}
& 1 & 2 & 3 \\
\mathrm{~A} & 0.1 & 0.7 & 0.1 \\
\mathrm{C} & 0.1 & 0.1 & 0.1 \\
\mathrm{G} & 0.1 & 0.1 & 0.1 \\
\mathrm{~T} & 0.7 & 0.1 & 0.7
\end{array}
$$

MEME web server

MEME Suite 4.11.0
\rightarrow Motif Discovery
\rightarrow Motif Enrichment
- Motif Scanning
- Motif Comparison
\rightarrow Manual
- Guides \& Tutorials
- Sample Outputs
$\begin{gathered} \text { File Format } \\ \text { Reference } \end{gathered}$
\rightarrow Databases
- Download \& Install
\rightarrow Help
\rightarrow Alternate Servers
\checkmark Authors \& Citing
Authors Citing the MEME Suit
\rightarrow Recent Jobs
4 Previous version 4.10.2

MEME
 Multiple Em for Motif Elicitation

Version 4.11.0
Data Submission Form
Perform motif discovery on DNA, RNA or protein datasets.
Select the motif discovery mode

- Normal mode Discriminative mode ?

Select the sequence alphabet

Use sequences with a standard alphabet or specify a custom alphabet. ?

- DNA, RNA or Protein Custom Choose File No fle chosen

Input the primary sequences

Enter sequences in which you want to find motifs. ?
Upload sequences \quad Choose File $N o$ file chosen
MEME discovers novel, ungapped motifs (recurring, fixed-length patterns) in your sequences (sample output from sequences) MEME splits variable-length patterns into two
or more separate motifs. See this Manual for more information.

Select the site distribution
How do you expect motif sites to be distributed in sequences? ? Zero or one occurrence per sequence \boldsymbol{v}

Select the number of motifs

How many motifs should MEME find? ? 3

Input job details
(Optional) Enter your email address. ?
(Optional) Enter a job description. ?

- Advanced options

Note: if the combined form inputs exceed 80 MB the job will be rejected. Start Search Clear Input

Version 4.11.0 Plense send comments and questions to: meme suiteecurvedu Powered by Opal
http://meme-suite.org/

