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Overview

 RNA-Seq technology
* The RNA-Seqg quantification problem

» Generative probabilistic models and Expectation-Maximization
for the quantification task



Goals for lecture

* What iIs RNA-Seq?

 How Is RNA-Seq used to measure the abundances of RNAS
within cells?

* What probabilistic models and algorithms are used for
analyzing RNA-Seq?



Measuring transcription the old way: microarrays
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Advantages of RNA-Seq over microarrays

No reference sequence needed

* With microarrays, limited to the probes on the chip

Low background noise

Large dynamic range

 10° compared to 107 for microarrays

High technical reproducibility

ldentify novel transcripts and splicing events



RNA-Seq technology

* Leverages rapidly advancing sequencing technology
* Transcriptome analog to whole genome shotgun segquencing
* Two key differences from genome sequencing:
1. Transcripts sequenced at different levels of coverage - expression levels

2. Sequences already known (in many cases) - coverage is measurement



A generic RNA-Seq protocol
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CCTTCNCACTTCGTTTCCCAC
TTTTTNCAGAGTTTTTTCTTG
GAACANTCCAACGCTTGGTGA
GGAAANAAGACCCTGTTGAGC
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCGTTGCGTT
CCCGCGCGCTTAGGCTACTCG
TCACACATCTCTAGCTAGCAT
CATGCTAGCTATGCCTATCTA




RNA-Seq data: FASTQ format

@HWUSI-EAS1789_0001:3:2:1708:1305#0/1 name
CCTTCNCACTTCGTTTCCCACTTAGCGATAATTTG —0
+HWUSI-EAS1789_0001:3:2:1708:1305#0/1 seguence read
VVULVBVYVYZZXZZ\ee[a b [a\a[\a M\ ‘ 4
@HWUSI-EAS1789_0001:3:2:2062:1304#0/1 qu alities

TTTTTNCAGAGTTTTTTCTTGAACTGGAAATTTTT _
+HWUSI-EAS1789_0001:3:2:2062:1304#0/1 palired-end reads
a__ [\Bbbb edeeefd cc b]bffff ffffff

@HWUSI-EAS1789 0001:3:2:3194:1303#0/1
GAACANTCCAACGCTTGGTGAATTCTGCTTCACAA readl
+HWUSI-EAS1789 0001:3:2:3194:1303#0/1 :

ZZ[[VBZZY][TWQQZ\ZS\[ZZXV_ \OX a[ZZ —
@HWUSI-EAS1789 0001:3:2:3716:1304#0/1 read?2
GGAAANAAGACCCTGTTGAGCTTGACTCTAGTCTG _ _
+HWUSI-EAS1789_0001:3:2:3716:1304#0/1 1 llumina H |Seq
aaXWYBZVTXZX_]Xdccdfbb_\a\aY_AJLZA

@HWUSI-EAS1789_0001:3:2:5000:1304#0/1 2500 lane

CCCGGNGATCCGCTGGGACAAGCAGCATATTGATA
+HWUSI-EAS1789 0001:3:2:5000:1304#0/1
aaaaaBeeeeffffehhhhhhggdhhhhahhhadh N /

~150 million reads



Tasks with RNA-Seq data

« Assembly:
« Given: RNA-Seq reads (and possibly a genome sequence)
« Do: Reconstruct full-length transcript sequences from the reads
* Quantification (our focus):
« Given: RNA-Seq reads and transcript sequences
* Do: Estimate the relative abundances of transcripts (“gene expression”)
» Differential expression:
* Given: RNA-Seq reads from two different samples and transcript sequences

« Do: Predict which transcripts have different abundances between two samples



RNA-Seq Is a relative abundance measurement

technology

 RNA-Se(q gives you reads from
the ends of a random sample
of fragments in your library

 Without additional data this
only gives information about
relative abundances

« Additional information, such as
levels of “spike-in” transcripts,
are needed for absolute
measurements
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Issues with relative abundance measures

Sample 1 Sample 1 Sample 2 Sample 2
absolute relative absolute relative
abundance abundance abundance abundance

« Changes in absolute expression of high expressors is a major factor

« Normalization is required for comparing samples in these situations



The basics of quantification with RNA-Seq data

* For simplicity, suppose reads are of length one (typically they are > 35 bases)

transcripts reads
, 200 100 A
? e 60 C
2 80
40

« What relative abundances would you estimate for these genes?

« Relative abundance is relative transcript levels in the cell, not proportion of
observed reads



Length dependence

* Probability of a read coming from a transcript « relative abundance x length

transcripts reads
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transcript 1 relative / (transcript 1 reads) / (total reads)
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Length dependence

* Probability of a read coming from a transcript « relative abundance x length

transcripts reads
200
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) 100 1 .
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The basics of quantification from RNA-Seq data

« Basic assumption:

0; = P(read from transcript i) = Z~17;£/

/\

expression level length
(relative abundance)

« Normalization factor is the mean length of expressed transcripts



The basics of quantification from RNA-Seq data

« Estimate the probabillity of reads being generated from a given
transcript by counting the number of reads that align to that transcript

g _ Ci- — # reads mapping to transcript |
E' —

N - total # of mappable reads

» Convert to expression levels by normalizing by transcript length
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The basics of quantification from RNA-Seq data

 Basic quantification algorithm
 Align reads against a set of reference transcript sequences
» Count the number of reads aligning to each transcript

« Convert read counts into relative expression levels



Counts to expression levels

« RPKM - Reads Per Kilobase per Million mapped reads

RPKM for gene i = 10° x

C;

('N

* TPM - Transcripts Per Million

(estimate of) TPM for isoform i = 10° x Z x E’;V

 Prefer TPM to RPKM because of normalization factor

« TPM Is a technology-independent measure (simply a fraction)



What if reads do not uniquely map to transcripts?

* The approach described assumes that every read can be
uniqguely aligned to a single transcript

* This is generally not the case

* Some genes have similar sequences - gene families,
repetitive sequences

* Alternative splice forms of a gene share a significant fraction
of sequence



Double-stranded genomic DNA template

Translation terminator Poly (A) addition
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Alternative splicing
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Multi-mapping reads in RNA-Seq

Species Read length % multi-mapping reads
Mouse 25 17%
Mouse 75 10%
Maize 25 52%
Axolotl 76 23%
Human 50 23%

* Throwing away multi-mapping reads leads to
1. Loss of information

2. Potentially biased estimates of abundance




Distributions of alignment counts

Fraction of mappad reads

Fraction of mapped reads
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What if reads do not uniquely map to transcripts?

* Multiread: a read that could have been derived from multiple
transcripts

transcripts reads
. 20 + 180 = 200 90 A
20+ 40 =060
2 = 40 C
’ 40
30T

« How would you estimate the relative abundances for these
transcripts?



Some options for handling multireads

« Discard multireads, estimate based on uniquely mapping reads only
« Discard multireads, but use “unique length” of each transcript in calculations
« “Rescue” multireads by allocating (fractions of) them to the transcripts
* Three step algorithm
1. Estimate abundances based on uniguely mapping reads only

2. For each multiread, divide it between the transcripts to which it maps,
proportionally to their abundances estimated in the first step

3.Recompute abundances based on updated counts for each transcript



Rescue method example - Step 1

transcripts reads
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Rescue method example - Step 2

transcripts reads
60
2 T o 40 C
40
30T
Step 2
0.278
157 =90 4+ 30 x = 102.1
1 X 0278 + 0.412
0.412
57 =40 4+ 30 X = 57.9
E X 0278 + 0.412

CheseUe = 40 4 0 = 40



Rescue method example - Step 3
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An observation about the rescue method

* Note that at the end of the rescue algorithm, we have an updated set of
abundance estimates

* These new estimates could be used to reallocate the multireads
* And then we could update our abundance estimates once again
« And repeat!

 This Is the intuition behind the statistical approach to this problem



RSEM (RNA-Seq by Expectation-Maximization) -
a generative probabilistic model

« Simplified view of the model (plate notation)
» Grey — observed variable
* White — latent (unobserved) variables
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4 N \
transcript probabilities
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v > n >

transcript /

orientation



RSEM - a generative probabilistic model
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Quantification as maximum likelihood inference

 Observed data likelihood

-_.(1[9 HYH TTYP(R’H_TH!L Eﬂ: nZQH:Sn:j:Fnzk:On:GIani)

n=1 i=0 j=0 k=0 o=0

* Likelihood function is concave with respect to 06
* Has a global maximum (or global maxima)

« Expectation-Maximization for optimization

‘RNA-Seq gene expression estimation with read mapping uncertainty ~
Li, B., Ruottl, V., Stewart, R., Thomson, J., Dewey, C.
Bioinformatics, 2010



Approximate Inference with read alignments

N

:qlg H TTYP(RH_THJL En: nZQH:Sn:j,Fn:k,On:GIGﬂ:i)

n=1 1=0 j=0 k=0 o=0

 Full likelihood computation requires O(NML?) time
* N (number of reads) ~ 107
« M (number of transcripts) ~ 104
L (average transcript length) ~ 103

* Approximate by alignment

? qw H Z HIP(RH = Tn, Ln — ’gﬂz n — Qn, Zﬂijka — 1‘Gn — 1)

n=1 (i,j,k,0)En=

all local alignments of read n with at most x mismatches



EM Algorithm

« Expectation-Maximization for RNA-Seq
« E-step: Compute expected read counts given current expression levels

« M-step: Compute expression values maximizing likelihood given
expected read counts

« Rescue algorithm = 1 iteration of EM



Expected read count visualization
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Improved accuracy over unique and rescue

predicted expression level
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predicted expression level

Improving accuracy on repetitive genomes: maize
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Finding the optimal read length
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RNA-Seqg and RSEM summary

 RNA-Seq Is the preferred technology for transcriptome analysis in most
settings

 The major challenge in analyzing RNA-Seq data: the reads are much
shorter than the transcripts from which they are derived

« Tasks with RNA-Seq data thus require handling hidden information:
which gene/isoform gave rise to a given read

* The Expectation-Maximization algorithm is extremely powerful in these
situations



Recent developments in RNA-Seq

* Long read sequences: PacBio and Oxford Nanopore

 Single-cell RNA-Seq: review
* Observe heterogeneity of cell populations

Model technical artifacts (e.g. artificial O counts)

« Detect sub-populations
* Predict pseudotime through dynamic processes

* Detect gene-gene and cell-cell relationships

« Alignment-free quantification:

o Kallisto

« Salmon



http://doi.org/10.1038/nature21350
http://robpatro.com/blog/?p=248
https://pachterlab.github.io/kallisto/
https://combine-lab.github.io/salmon/

Public sources of RNA-Seq data

Gene Expression Omnibus (GEO): http://www.ncbi.nlm.nih.gov/geo/

« Both microarray and sequencing data

Sequence Read Archive (SRA): http://www.ncbi.nlm.nih.gov/sra

 All sequencing data (not necessarily RNA-Seq)

ArrayExpress: https://www.ebi.ac.uk/arrayexpress/

« European version of GEO

Homogenized data: MetaSRA, Toil, recount2, ARCHS?



http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/
http://metasra.biostat.wisc.edu/
https://xenabrowser.net/datapages/?host=https://toil.xenahubs.net
https://jhubiostatistics.shinyapps.io/recount/
https://amp.pharm.mssm.edu/archs4/

