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Overview

• Biological question
– What is causing differential gene expression?

• Goal
– Find regulatory motifs in the DNA sequence

• Solution
– FIRE (Finding Informative Regulatory Elements)
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Goals for Lecture
Key concepts:
• Entropy

• Mutual information (MI)

• Motif logos

• Using MI to identify cis-regulatory module elements

3



A Common Type of Question

Figure from Gasch et al., Mol. Biol. Cell, 2000

Experiments / Conditions

G
en

es

What causes this set of yeast 
genes to be up-regulated in 
stress conditions?
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…accgcgctgaaaaaattttccgatgagtttagaagagtcaccaaaaaattttcatacagcctactggtgttctctgtgtgtgctaccactggctgtcatcatggttgta…

…caaaattattcaagaaaaaaagaaatgttacaatgaatgcaaaagatgggcgatgagataaaagcgagagataaaaatttttgagcttaaatgatctggcatgagcagt…

…gagctggaaaaaaaaaaaatttcaaaagaaaacgcgatgagcatactaatgctaaaaatttttgaggtataaagtaacgaattggggaaaggccatcaatatgaagtcg…

• Co-expressed genes are often controlled by specific 
configurations of binding sites

cis-Regulatory Modules (CRMs)

RNAP

RNAP

RNAP
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Information Theory Background
• Problem 

– Create a code to communicate information
• Example

– Need to communicate the manufacturer of each bike 
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Information Theory Background

• Four types of bikes
• Possible code

11
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• Expected number of bits we have to communicate:  
2 bits/bike

Trek

Specialized

Cervelo

Serotta

Type code
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Information Theory Background
• Can we do better?
• Yes, if the bike types aren’t equiprobable

• Optimal code uses       bits for event with 
probability
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Information Theory Background
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Entropy
• Entropy is a measure of uncertainty associated with a 

random variable

• Can be interpreted as the expected number of bits 
required to communicate the value of the variable
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Image from Wikipedia
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How is entropy related to 
DNA sequences?
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Sequence Logos

• Typically represent a binding site

• Height of each character c is proportional to P(c)

weblogo.berkeley.edu
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• Height of logo at a given position determined by decrease 
in entropy (from maximum possible)
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Mutual Information
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• Mutual information quantifies how much knowing the 
value of one variable tells about the value of another

entropy of M
entropy of M
conditioned on C
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FIRE
Elemento et al., Molecular Cell 2007

• Finding Informative 
Regulatory Elements 
(FIRE)

• Given a set of sequences 
grouped into clusters

• Find motifs, and 
relationships, that have 
high mutual information
with the clusters

• Applicable when 
sequences have 
continuous values instead 
of cluster labels
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Mutual Information in FIRE

• We can compute the mutual information between a motif 
and the clusters as follows
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m=0, 1 represent absence/presence of motif

c ranges over the cluster labels
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Finding Motifs in FIRE

• Motifs are represented by regular expressions; initially 
each motif is represented by a strict k-mer (e.g. 
TCCGTAC)

1. Test all k-mers (k=7 by default) to see which have 
significant mutual information with the cluster label

2. Filter k-mers using a significance test to obtain motif 
seeds

3. Generalize each motif seed

4. Filter motifs using a significance test
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Key Step in Generalizing a Motif in FIRE
• Randomly pick a position in the motif
• Generalize in all ways consistent with current value at position
• Score each by computing mutual information
• Retain the best generalization

TCCGTAC

TCC[CG]TAC

TCC[AG]TAC TCC[GT]TAC

TCC[CGT]TACTCC[ACG]TAC

TCC[AGT]TAC
TCC[ACGT]TAC
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Generalizing a Motif in FIRE

given: k-mer, n

best¬ null
repeat n times

motif ¬ k-mer
repeat
motif¬ GeneralizePosition(motif)    // shown on previous slide

until convergence (no improvement at any position)
if score(motif) > score(best)

best¬ motif

return: best
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Generalizing a Motif in FIRE: Example

Figure from Elemento et al. Molecular Cell 2007 20



Avoiding Redundant Motifs

• Different seeds could converge to similar motifs

• Use mutual information to test whether new motif is 
unique and contributes new information

TCCGTAC

TCC[CG]TAC

TCCCTAC

TCC[CG]TAC
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Characterizing Predicted Motifs in FIRE

• Mutual information is also used to assess various 
properties of found motifs
– orientation bias
– position bias
– interaction with another motif
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Using MI to Determine Orientation Bias

);( CSI C  indicates cluster
S=1 indicates motif present on transcribed strand
S=0 otherwise (not present or not on transcribed strand)
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Also compute MI where S=1 
indicates motif present on 
complementary strand
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Using MI to Determine Position Bias
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Using MI to Determine Motif Interactions
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Motif Interactions Example

Yeast motif-motif interactions
White: positive association
Dark red: negative association
Blue box: DNA-DNA
Green box: DNA-RNA
Plus: spatial co-localization
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Discussion of FIRE

• FIRE
– mutual information used to identify motifs and 

relationships among them
– motif search is based on generalizing informative k-

mers

• Consider advantages and disadvantages of k-mers
versus PWMs

• In contrast to many motif-finding approaches, FIRE 
takes advantage of negative sequences

• FIRE returns all informative motifs found
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