Alignment of Long Sequences: LAGAN BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2019 Colin Dewey colin.dewey@wisc.edu #### Goals for Lecture #### Key concepts - using tries and threaded tries to find alignment seeds - using sparse dynamic programming (DP) to find a chain of local alignments - constrained dynamic programming to align between/around anchors ## LAGAN: Three Main Steps #### **General** - to find seeds for global alignment - of anchors - Pattern matching 2. Find a good chain 3. Fill in with standard but constrained alignment #### **LAGAN** - obtain seeds - Threaded tries to 2. Sparse dynamic 3. Dynamic programming for chaining - programming for gap filling # Step 1: Finding Seeds in LAGAN - Degenerate k-mers: matching k-long sequences with a small number of mismatches allowed - By default, LAGAN uses 10-mers and allows 1 mismatch cacg cgcgctacat acct acta cgcggtacat cgta ## Finding Seeds in LAGAN Example: a trie to represent all 3-mers of the sequence - One sequence is used to build the trie - The other sequence (the query) is "walked" through to find matching k-mers ## Allowing Degenerate Matches Suppose we're allowing 1 base to mismatch in looking for matches to the 3-mer acc; need to explore green ### LAGAN Uses Threaded Tries • In a threaded trie, each leaf for word $W_1...W_k$ has a back pointer to the node for $W_2...W_k$ ## Traversing a Threaded Trie • Consider traversing the trie to find 3-mer matches for the Usually requires following only two pointers to match against the next k-mer, instead of traversing tree from root for each # Step 1b: Chaining Seeds in LAGAN - can chain seeds s₁ and s₂ if - the indices of s₁ > indices of s₂ (for both sequences) - s₁ and s₂ are near each other - keep track of seeds in the "search box" as the query sequence is processed Figure from: Brudno et al. BMC Bioinformatics, 2003 # Step 2: Chaining in LAGAN use sparse dynamic programming to chain local alignments $$(x,y) \rightarrow (x',y')$$ requires Each local alignment has a weight FIND the chain with highest total weight ## Sparse DP for rectangle chaining - 1,..., N: rectangles - (h_i, l_i): y-coordinates of rectangle j - w(j): weight of rectangle j - V(j): optimal score of chain ending in j - L: list of triplets (l_j, V(j), j) - L is sorted by I_i: smallest (North) to largest (South) value - L is implemented as a balanced binary tree #### Main idea: - Sweep through xcoordinates - To the right of b, anything chainable to a is chainable to b - Therefore, if V(b) > V(a), rectangle a is "useless" for subsequent chaining - In L, keep rectangles j sorted with increasing l_jcoordinates ⇒ sorted with increasing V(j) score ### Sparse DP for rectangle chaining Go through rectangle x-coordinates, from lowest to highest: - 1. When on the leftmost end of rectangle i: - a. j: rectangle in L, with largest l_i < h_i - b. V(i) = w(i) + V(j) - 2. When on the rightmost end of i: - a. k: rectangle in L, with largest $I_k \le I_i$ - b. If V(i) > V(k): - i. INSERT $(I_i, V(i), i)$ in L - ii. **REMOVE** all $(I_j, V(j), j)$ with $V(j) \le V(i) \& I_j \ge I_i$ ### Example | V | а | b | С | d | е | | |---|---|----|---|----|----|--| | | 5 | 11 | 8 | 12 | 13 | | | | -li | 5 | 9 | 15 | 16 | |---|------|---|----|----|----| | L | V(i) | 5 | 11 | 12 | 13 | | | i | a | b | d | e | - 1. When on the leftmost end of rectangle i: - a. j: rectangle in L, with largest $l_j < h_i$ - b. V(i) = w(i) + V(j) - 2. When on the rightmost end of i: - a. k: rectangle in L, with largest $l_k \le l_i$ - b. If V(i) > V(k): - i. INSERT $(l_i, V(i), i)$ in L - **REMOVE** all $(l_i, V(j), j)$ with $V(j) \le V(i) \& l_i \ge l_i$ ### Time Analysis - 1. Sorting the x-coords takes O(N log N) - 2. Going through x-coords: N steps - 3. Each of N steps requires O(log N) time: - Searching L takes log N - Inserting to L takes log N - All deletions are consecutive, so log N per deletion - Each element is deleted at most once: N log N for all deletions - Recall that INSERT, DELETE, SUCCESSOR, take O(log N) time in a balanced binary search tree # Constrained Dynamic Programming if we know that the ith element in one sequence must align with the jth element in the other, we can ignore two rectangles in the DP matrix # Step 3: Computing the Global Alignment in LAGAN - given an anchor that starts at (i, j) and ends at (i', j'), LAGAN limits the DP to the unshaded regions - thus anchors are somewhat flexible Figure from: Brudno et al. Genome Research, 2003 # Step 3: Computing the Global Alignment in LAGAN Figures from: Brudno et al. Genome Research, 2003 # Comparing MUMmer and LAGAN | | Baboon | Chimpanzee | Mouse | Rat | Cow | Pig | Cat | Dog | Chicken | Zebrafish | Fugu | Overall | |---|--------|------------|-------|-----|-----|-----|-----|-----|---------|-----------|------|---------| | Exons | 232 | 176 | 230 | 230 | 224 | 174 | 176 | 182 | 68 | 48 | 150 | 1914 | | MUMmer (% human exons covered by ≥ 90% alignment) | 100 | 100 | 8 | 9 | 40 | 44 | 47 | 37 | 0 | 0 | 0 | 41 | | LAGAN (% human exons covered by ≥ 90% alignment) | 100 | 100 | 100 | 100 | 99 | 100 | 100 | 99 | 99 | 88 | 77 | 98 | # Comparing MUMmer and LAGAN - Pattern matching to find seeds for global alignment - 2. Find a good chain of anchors - 3. Fill in with standard but constrained alignment #### **MUMmer** - 1. Suffix trees to obtain MUMs - Longest Increasing Subsequence - Smith-Waterman, recursiveMUMmer #### **LAGAN** - 1. k-mer trie to obtain seeds - 2. Sparse dynamic programming - 3. Dynamic programming