
Alignment of Long Sequences:
LAGAN

BMI/CS 776
www.biostat.wisc.edu/bmi776/

Spring 2019
Colin Dewey

colin.dewey@wisc.edu

These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Mark Craven, Colin Dewey, and Anthony Gitter

mailto:colin.dewey@wisc.edu
http://creativecommons.org/licenses/by-nc/4.0/

Goals for Lecture
Key concepts
• using tries and threaded tries to find alignment seeds
• using sparse dynamic programming (DP) to find a chain

of local alignments
• constrained dynamic programming to align

between/around anchors

2

LAGAN: Three Main Steps

1. Pattern matching
to find seeds for
global alignment

2. Find a good chain
of anchors

3. Fill in with standard
but constrained
alignment

4

B
ru

dn
o

et
 a

l.
 G

en
om

e
Re

se
ar

ch
, 2

00
3

1. Threaded tries to
obtain seeds

2. Sparse dynamic
programming for
chaining

3. Dynamic
programming for
gap filling

General

LAGAN

Step 1: Finding Seeds in LAGAN

• Degenerate k-mers: matching k-long
sequences with a small number of mismatches
allowed

• By default, LAGAN uses 10-mers and allows 1
mismatch

cacg cgcgctacat acct
acta cgcggtacat cgta

5

Finding Seeds in LAGAN
• Example: a trie to represent all 3-mers of the sequence

gaaccgacct

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

• One sequence is used to build the trie
• The other sequence (the query) is “walked” through to

find matching k-mers
6

Allowing Degenerate Matches
• Suppose we’re allowing 1 base to mismatch in looking

for matches to the 3-mer acc; need to explore green
nodes

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

7

LAGAN Uses Threaded Tries
• In a threaded trie, each leaf for word w1...wk has a back

pointer to the node for w2...wk

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

8

Traversing a Threaded Trie
• Consider traversing the trie to find 3-mer matches for the

query sequence: accgt

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

• Usually requires following only two pointers to match against
the next k-mer, instead of traversing tree from root for each

9

Step 1b: Chaining Seeds in LAGAN

• can chain seeds s1 and s2 if
– the indices of s1 > indices

of s2 (for both sequences)
– s1 and s2 are near each

other
• keep track of seeds in the

“search box” as the query
sequence is processed

Figure from: Brudno et al. BMC Bioinformatics, 2003

Step 2: Chaining in LAGAN
• use sparse dynamic programming to chain local

alignments

Slide from Serafim Batzoglou, Stanford University

The Problem: Find a Chain of Local Alignments

(x,y) ® (x’,y’)

requires

x < x’
y < y’

Each local alignment has a
weight

FIND the chain with highest
total weight

Slide from Serafim Batzoglou, Stanford University

Sparse DP for rectangle chaining

• 1,…, N: rectangles

• (hj, lj): y-coordinates of rectangle j

• w(j): weight of rectangle j

• V(j): optimal score of chain ending in j

• L: list of triplets (lj, V(j), j)

§ L is sorted by lj: smallest (North) to largest (South) value
§ L is implemented as a balanced binary tree

y

h

l

Slide from Serafim Batzoglou, Stanford University

Sparse DP for rectangle chaining

Main idea:

• Sweep through x-
coordinates

• To the right of b, anything
chainable to a is chainable
to b

• Therefore, if V(b) > V(a),
rectangle a is “useless” for
subsequent chaining

• In L, keep rectangles j
sorted with increasing lj-
coordinates Þ
sorted with increasing V(j)
score

V(b)
V(a)

Slide from Serafim Batzoglou, Stanford University

Sparse DP for rectangle chaining

Go through rectangle x-coordinates, from lowest to highest:

1. When on the leftmost end of rectangle i:

a. j: rectangle in L, with largest lj < hi

b. V(i) = w(i) + V(j)

2. When on the rightmost end of i:

a. k: rectangle in L, with largest lk £ li
b. If V(i) > V(k):

i. INSERT (li, V(i), i) in L
ii. REMOVE all (lj, V(j), j) with V(j) £ V(i) & lj ³ li

i

j

k

Slide from Serafim Batzoglou, Stanford University

Example
x

y

a: 5

c: 3

b: 6

d: 4
e: 2

2

5
6

9
10

11
12

14
15
16

1. When on the leftmost end of rectangle i:
a. j: rectangle in L, with largest lj < hi

b. V(i) = w(i) + V(j)

2. When on the rightmost end of i:
a. k: rectangle in L, with largest lk £ li

b. If V(i) > V(k):
i. INSERT (li, V(i), i) in L
ii. REMOVE all (lj, V(j), j) with V(j) £ V(i) & lj ³ li

a b c d e
V

5

L
li

V(i)

i

5
5
a

8

11
8
c

11 12

9
11
b

15
12
d

13

16
13
e

Slide from Serafim Batzoglou, Stanford University

Time Analysis

1. Sorting the x-coords takes O(N log N)

2. Going through x-coords: N steps

3. Each of N steps requires O(log N) time:

• Searching L takes log N
• Inserting to L takes log N
• All deletions are consecutive, so log N per deletion
• Each element is deleted at most once: N log N for all deletions

• Recall that INSERT, DELETE, SUCCESSOR, take O(log N) time in
a balanced binary search tree

Constrained Dynamic
Programming

• if we know that the ith
element in one sequence
must align with the jth
element in the other, we
can ignore two rectangles
in the DP matrix

i

j

Step 3: Computing the Global
Alignment in LAGAN

Figure from: Brudno et al. Genome Research, 2003

• given an anchor that
starts at (i, j) and ends
at (i’, j’), LAGAN limits
the DP to the
unshaded regions

• thus anchors are
somewhat flexible

Step 3: Computing the Global
Alignment in LAGAN

Figures from: Brudno et al. Genome Research, 2003

Comparing MUMmer and LAGAN

21

Ba
bo

on

C
hi

m
pa

nz
ee

M
ou

se

R
at

C
ow

Pi
g

C
at

D
og

C
hi

ck
en

Ze
br

af
is

h

Fu
gu

O
ve

ra
ll

Exons 232 176 230 230 224 174 176 182 68 48 150 1914

MUMmer (%
human exons
covered by ≥
90%
alignment)

100 100 8 9 40 44 47 37 0 0 0 41

LAGAN (%
human exons
covered by ≥
90%
alignment)

100 100 100 100 99 100 100 99 99 88 77 98

Comparing MUMmer and LAGAN

1. Pattern matching
to find seeds for
global alignment

2. Find a good chain
of anchors

3. Fill in with standard
but constrained
alignment

22

B
ru

dn
o

et
 a

l.
 G

en
om

e
Re

se
ar

ch
, 2

00
3

1. Suffix trees to
obtain MUMs

2. Longest
Increasing
Subsequence

3. Smith-Waterman,
recursive
MUMmer

MUMmer

1. k-mer trie to
obtain seeds

2. Sparse dynamic
programming

3. Dynamic
programming

LAGAN

