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Goals for Lecture

Key concepts

 using tries and threaded tries to find alignment seeds

* using sparse dynamic programming (DP) to find a chain
of local alignments

* constrained dynamic programming to align
between/around anchors



General

LAGAN

LAGAN: Three Main Steps

Pattern matching
to find seeds for
global alignment

Threaded tries to
obtain seeds

2. Find a good chain 3.
of anchors

Brudno et al. Genome Research, 2003

Fill in with standard
but constrained
alignment



Step 1: Finding Seeds in LAGAN

* Degenerate k-mers: matching k-long

sequences with a small number of mismatches
allowed

* By default, LAGAN uses 10-mers and allows 1
mismatch

cacg|cgcgctacatjacct
acta|cgcggtacat|cgta




Finding Seeds in LAGAN

 Example: a trie to represent all 3-mers of the sequence
gaaccgacct

2 3,7 2 8 5 1 6

* One sequence is used to build the trie

* The other sequence (the query) is “walked” through to
find matching k-mers



Allowing Degenerate Matches

* Suppose we're allowing 1 base to mismatch in looking
for matches to the 3-mer acc; need to explore green
nodes




LAGAN Uses Threaded Tries

 |n a threaded trie, each leaf for word W,...W, has a back
pointer to the node for W... W




Traversing a Threaded Trie

* Consider traversing the trie to find 3-mer matches for the
query sequence: accgt

a

d C C
el
C C o
3,7
\

« Usually requires following only two pointers to match against
the next k-mer, instead of traversing tree from root for each



Step 1b: Chaining Seeds in LAGAN
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Step 2: Chaining in LAGAN

* use sparse dynamic programming to chain local

alignments




The Problem: Find a Chain of Local Alignments
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Slide from Serafim Batzoglou, Stanford University ‘

(Xy) = (X1Y’)
requires
X <X
y<y
Each local alignment has a

weight

FIND the chain with highest
total weight



Sparse DP for rectangle chaining

e 1,...,N: rectangles h
* (hy ly): y-coordinates of rectangle |
|
« W()): weight of rectangle |
* V(j): optimal score of chain ending in | \
- L: list of triplets (I, V(j), j) y

L is sorted by I;: smallest (North) to largest (South) value
L is implemented as a balanced binary tree

Slide from Serafim Batzoglou, Stanford University ‘



Sparse DP for rectangle chaining

Main idea:

Sweep through x-
coordinates

To the right of b, anything
chainable to a is chainable
tob

Therefore, if V(b) > V(a),
rectangle a is “useless” for
subsequent chaining

In L, keep rectangles j
sorted with increasing |-
coordinates =

sorted with increasing V(j)
score

Slide from Serafim Batzoglou, Stanford University
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Sparse DP for rectangle chaining

Go through rectangle x-coordinates, from lowest to highest:

1. When on the leftmost end of rectangle i: j

j: rectangle in L, with largest |; < h;

V(i) = w(i) + V(j) K

2. When on the rightmost end of i:

k: rectangle in L, with largest |, < |;
If V(i) > V(k):
INSERT  (l;, V(i), i) inL
REMOVE all (l;, V(j), j) with V(j) < V(i) & | > |,

Slide from Serafim Batzoglou, Stanford University
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1. When on the leftmost end of rectangle i:
J: rectangle in L, with largest I, <h,
V(i) = w(i) + V()
2. When on the rightmost end of i:
k: rectangle in L, with largest I, <1;
If V(i) > V(k):

INSERT (I, V(),i)inL
REMOVE all (I;, V(j), j) with V(j) < V(i) & 1, > ;

Slide from Serafim Batzoglou, Stanford University



Time Analysis

1. Sorting the x-coords takes O(N log N)
2. Going through x-coords: N steps

3. Each of N steps requires O(log N) time:

Searching L takes log N

Inserting to L takes log N

All deletions are consecutive, so log N per deletion

Each element is deleted at most once: N log N for all deletions

Recall that INSERT, DELETE, SUCCESSOR, take O(log N) time in
a balanced binary search tree

Slide from Serafim Batzoglou, Stanford University
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Step 3: Computing the Global
Alignment in LAGAN

1-T 1 1t

* given an anchor that 4

,,,,,,,,,,,

starts at (i, /) and ends %7

at (7",j"), LAGAN limits oy ——»»HH 1B  [hk ko

the DP to the ; 7

unshaded regions it D77
* thus anchors are

somewhat flexible

1’-r 1° 1’41

Figure from: Brudno et al. Genome Research, 2003
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Comparing MUMmer and LAGAN
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Comparing MUMmer and LAGAN
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Brudno et al. Genome Research, 2003

MUMmer

1.

LAGAN

Pattern matching 2.
to find seeds for
global alignment

Suffix trees to 2.
obtain MUMs
k-mer trie to 2.

obtain seeds

Find a good chain 3.
of anchors

Longest 3.
Increasing
Subsequence

Sparse dynamic 3.

programming

Fill in with standard
but constrained
alignment

Smith-Waterman,
recursive
MUMmer

Dynamic

programming ’



