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Goals for Lecture
Key concepts
• using tries and threaded tries to find alignment seeds
• using sparse dynamic programming (DP) to find a chain 

of local alignments
• constrained dynamic programming to align 

between/around anchors
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LAGAN: Three Main Steps

1. Pattern matching 
to find seeds for 
global alignment

2. Find a good chain 
of anchors

3. Fill in with standard 
but constrained 
alignment
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1. Threaded tries to 
obtain seeds

2. Sparse dynamic 
programming for 
chaining

3. Dynamic 
programming for 
gap filling

General

LAGAN



Step 1: Finding Seeds in LAGAN

• Degenerate k-mers: matching k-long 
sequences with a small number of mismatches 
allowed 

• By default, LAGAN uses 10-mers and allows 1 
mismatch

cacg cgcgctacat acct
acta cgcggtacat cgta
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Finding Seeds in LAGAN
• Example: a trie to represent all 3-mers of the sequence 

gaaccgacct

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

• One sequence is used to build the trie
• The other sequence (the query) is “walked” through to 

find matching k-mers
6



Allowing Degenerate Matches
• Suppose we’re allowing 1 base to mismatch in looking 

for matches to the 3-mer acc; need to explore green 
nodes

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c
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LAGAN Uses Threaded Tries
• In a threaded trie, each leaf for word w1...wk has a back 

pointer to the node for w2...wk

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c
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Traversing a Threaded Trie
• Consider traversing the trie to find 3-mer matches for the 

query sequence: accgt

a c g

3, 72 4 58 1 6

a c c g a

c c g t aa c

• Usually requires following only two pointers to match against 
the next k-mer, instead of traversing tree from root for each
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Step 1b: Chaining Seeds in LAGAN

• can chain seeds s1 and s2 if
– the indices of s1 > indices  

of s2 (for both sequences)
– s1 and s2 are near each 

other
• keep track of seeds in the 

“search box” as the query 
sequence is processed

Figure from: Brudno et al.  BMC Bioinformatics, 2003



Step 2: Chaining in LAGAN
• use sparse dynamic programming to chain local 

alignments



Slide from Serafim Batzoglou, Stanford University

The Problem: Find a Chain of Local Alignments

(x,y) ® (x’,y’)

requires

x < x’
y < y’

Each local alignment has a 
weight

FIND the chain with highest 
total weight
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Sparse DP for rectangle chaining

• 1,…, N: rectangles

• (hj, lj): y-coordinates of rectangle j

• w(j): weight of rectangle j

• V(j): optimal score of chain ending in j

• L: list of triplets (lj, V(j), j)

§ L is sorted by lj: smallest (North) to largest (South) value
§ L is implemented as a balanced binary tree

y
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Sparse DP for rectangle chaining

Main idea: 

• Sweep through x-
coordinates

• To the right of b, anything 
chainable to a is chainable 
to b

• Therefore, if V(b) > V(a), 
rectangle a is “useless” for 
subsequent chaining

• In L, keep rectangles j 
sorted with increasing lj-
coordinates Þ
sorted with increasing V(j) 
score

V(b)
V(a)
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Sparse DP for rectangle chaining

Go through rectangle x-coordinates, from lowest to highest:

1. When on the leftmost end of rectangle i:

a. j: rectangle in L, with largest lj < hi

b. V(i) = w(i) + V(j)

2. When on the rightmost end of i:

a. k: rectangle in L, with largest lk £ li
b. If V(i) > V(k):

i. INSERT (li, V(i), i) in L
ii. REMOVE all (lj, V(j), j) with V(j) £ V(i) & lj ³ li

i

j

k
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Example
x

y

a: 5

c: 3

b: 6

d: 4
e: 2

2
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1. When on the leftmost end of rectangle i:
a. j: rectangle in L, with largest lj < hi

b. V(i) = w(i) + V(j)

2. When on the rightmost end of i:
a. k: rectangle in L, with largest lk £ li

b. If V(i) > V(k):
i. INSERT (li, V(i), i) in L
ii. REMOVE all (lj, V(j), j) with V(j) £ V(i) & lj ³ li

a b c d e
V
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L
li

V(i)
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Time Analysis

1. Sorting the x-coords takes O(N log N)

2. Going through x-coords: N steps

3. Each of N steps requires O(log N) time:

• Searching L takes log N
• Inserting to L takes log N
• All deletions are consecutive, so log N per deletion
• Each element is deleted at most once: N log N for all deletions

• Recall that INSERT, DELETE, SUCCESSOR, take O(log N) time in 
a balanced binary search tree



Constrained Dynamic 
Programming

• if we know that the ith
element in one sequence 
must align with the jth
element in the other, we 
can ignore two rectangles 
in the DP matrix

i

j



Step 3: Computing the Global 
Alignment in LAGAN

Figure from: Brudno et al.  Genome Research, 2003

• given an anchor that 
starts at (i, j) and ends 
at (i’, j’), LAGAN limits 
the DP to the 
unshaded regions

• thus anchors are 
somewhat flexible



Step 3: Computing the Global 
Alignment in LAGAN

Figures from: Brudno et al.  Genome Research, 2003



Comparing MUMmer and LAGAN
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Exons 232 176 230 230 224 174 176 182 68 48 150 1914

MUMmer (% 
human exons 
covered by ≥
90% 
alignment)

100 100 8 9 40 44 47 37 0 0 0 41

LAGAN (% 
human exons 
covered by ≥
90% 
alignment)

100 100 100 100 99 100 100 99 99 88 77 98



Comparing MUMmer and LAGAN

1. Pattern matching 
to find seeds for 
global alignment

2. Find a good chain 
of anchors

3. Fill in with standard 
but constrained 
alignment
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1. Suffix trees to 
obtain MUMs

2. Longest 
Increasing 
Subsequence

3. Smith-Waterman, 
recursive 
MUMmer

MUMmer

1. k-mer trie to 
obtain seeds

2. Sparse dynamic 
programming

3. Dynamic 
programming

LAGAN


