Markov Models for Gene Finding

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2020
Daifeng Wang
daifeng.wang@wisc.edu

These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Mark Craven, Colin Dewey, Anthony Gitter and Daifeng Wang



http://creativecommons.org/licenses/by-nc/4.0/

Outline for Gene Finding

* Interpolated Markov Model
— Finding bacterial genes

» Generalized Hidden Markov Model
— Finding eukaryotic genes
— Comparative information



Interpolated Markov Models
for Gene Finding

Key concepts
 the gene-finding task

 the trade-off between potential predictive value and

parameter uncertainty in choosing the order of a Markov
model

* Interpolated Markov models



The Gene Finding Task

Given: an uncharacterized DNA sequence

Do: locate the genes in the sequence, including the
coordinates of individual exons and introns
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Splice Signals Example

donor sites

5’ splice site

acceptor sites

3’ splice site

TTTTTTTzl g
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Figures from Yi Xing
exon

* There are significant dependencies among non-adjacent
positions in donor splice signals

 Informative for inferring hidden state of HMM



Sources of Evidence for Gene Finding

« Signals: the sequence signals (e.g. splice junctions)
involved in gene expression (e.g., RNA-seq reads)

« Content: statistical properties that distinguish
protein-coding DNA from non-coding DNA (focus in
this lecture)

« Conservation: signal and content properties that are
conserved across related sequences (e.g.
orthologous regions of the mouse and human
genome)



Gene Finding: Search by Content

* Encoding a protein affects the statistical properties of
a DNA sequence

— some amino acids are used more frequently than
others (Leu more prevalent than Trp)

— different numbers of codons for different amino
acids (Leu has 6, Trp has 1)

— for a given amino acid, usually one codon is used
more frequently than others

* this is termed codon preference
* these preferences vary by species



Codon Preference in E. Coli

AA codon /1000
Gly GGG 1.89
Gly GGA 0.44
Gly GGU 52.99
Gly GGC 34.55
Glu GAG 15.68
Glu GAA 57.20
Asp GAU 21.63

Asp GAC 43.26



Reading Frames

* A given sequence may encode a protein in any of the
six reading frames

GCTACGGAGCTTCGGAGTC
CGATGCCTCGAAGCCTCG




Open Reading Frames (ORFs)

* An OREF is a sequence that
— starts with a potential start codon (e.g., ATG)

— ends with a potential stop codon, in the same
reading frame (e.g., TAG, TAA, TGA)

— doesn’t contain another stop codon in-frame
— and is sufficiently long (say > 100 bases)

N f

GTTATGGC CT 06 TCGTGATT

* An ORF meets the minimal requirements to be a
protein-coding gene in an organism without introns
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Markov Models & Reading Frames

« Consider modeling a given coding sequence

* For each “word” we evaluate, we’ll want to consider its
position with respect to the reading frame we’re assuming

reading frame

N

GCTACGGAGCTTCGGAGUC

GCTACG G is in 3" codon position
CTACGG G is in 1st position
T A C @ G A| Aisin2"position

« (Can do this using an inhomogeneous model



Inhomogeneous Markov Model

Homogenous Markov model: transition probability
matrix does not change over time or position

Inhomogenous Markov model: transition probability
matrix depends on the time or position
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Higher Order Markov Models

« Higher order models remember more “history”
—n-order P(x;lx,_,,x_,,....x))=P(x, 1 x_,....x,_)

» Additional history can have predictive value

« Example:

— predict the next word in this sentence fragment
“...you_ " (are, give, passed, say, see, too, ...?)
— now predict it given more history

b

“...can you

7

“...say can you

7

“...oh say can you




A Fifth Order Inhomogeneous
Markov Model

AAAAA

CTACA

CTACC

start

CTACG

CTACT

GCTAC

TTTTT

position 2

P(x. |x_s,....x,_,, position)
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AAAAA

AAAAA

A Fifth Order Inhomogeneous
Markov Model

CTACA

AAAAA

start

CTACC

CTACA

CTACG

CTACC

CTACA

CTACT

CTACG

CTACT

TACAA

GCTAC

TACAC

TACAG

GCTAC

TACAT

TTTTT

position 2

TTTTT

position 3

TTTTT

position 1

Trans.
to states
in pos. 2
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Selecting the Order of a
Markov Model

« But the number of parameters we need to estimate
grows exponentially with the order

— for modeling DNA we need O(4"*') parameters
for an nth order model

* The higher the order, the less reliable we can expect
our parameter estimates to be

« Suppose we have 100k bases of sequence to
estimate parameters of a model

— for a 2"4 order homogeneous Markov chain, we’d
see each history 6250 times on average

— for an 8" order chain, we’d see each history ~ 1.5
times on average

16



Interpolated Markov Models

 The IMM idea: manage this trade-off by interpolating
among models of various orders

« Simple linear interpolation:
B (6 1 X505 %) = AgP(X;)
+ 4 P(x; | x; )

+A P(X; | x,_ eees X ;)
 where Z/li =1

17



Interpolated Markov Models

* We can make the weights depend on the history

— for a given order, we may have significantly more
data to estimate some words than others

* General linear interpolation

P (X [ X_ysees X ) = Ao P(x;)
+ A4 (x,_ ) P(x; [ x,_))

A is a function of /_I_;n (x

the given history i—n2°°* xi—l)P(‘xi | Xipoeees xi—l)
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The GLIMMER System

[Salzberg et al., Nucleic Acids Research, 1998]

« System for identifying genes in bacterial genomes

« Uses 8" order, inhomogeneous, interpolated Markov
models

Matt MacManes
@ \  Follow | v
. @macmanes

Did people really stop developing ab initio
gene predictors in like 20097

9:40 AM - 29 Dec 2017

Al Titus Brown @ctitusbrown - 29 Dec 2017 v
Replying to @macmanes

| think so. From what | recall, bacterial gene prediction is 99% accurate/sensitive,
and euk gene prediction is horrendously inaccurate so => mRNAseq and
homology methods took over.
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IMMs in GLIMMER

. How does GLIMMER determine the A values?

* First, let's express the IMM probability calculation
recursively

})IMM,n (‘xi | ‘xi—n 29 xi—l) —

A (x,_ ,...

(1= A, (X, 5ees X )]PIMM,n-l (X [ X, r5eees Xip)

X )P [ Xy X))+

* Letc(x,_,,...,x, ;) be the number of times we see the
history X, ,...,X; , in our training set
A (x X, )=1 1f c(x , X, )>400

l'_n,... i_n,...

20



IMMs in GLIMMER

 |f we haven't seen X,_,,.--,X;,_; more than 400 times,
then compare the counts for the following:

nth order history + base (n-1)th order history + base

X seeesX; 1,0 X o iqsees X; 150
X s X; 15C X igsees X (»C
XinsersXi15 8 Xiniroees X158
X seees X 151 X ipseres X ol

 Use a statistical test to assess whether the
distributions of X; depend on the order

21



IMMs in GLIMMER

nth order history + base (n-1)th order history + base

X geesX; 150 X o iqseeesX; 1,0
X seees X 15C X 150y X; 15C
Xicpsees X158 Xips1ooeo X158
X o seees Xi 151 X ipseres X gl

Null hypothesis in ¥ test: X; distribution is
independent of order

Define d =1— pvalue
If d is small we don’t need the higher order history

22



IMMs in GLIMMER

« Putting it all together

(

] if c¢(x,_,,...,x;_;) > 400
2 )= ddx X)) eeirg > 035
400
0 otherwise

\

where d e (0,1)

« why 4007
- “gives ~95% confidence that the sample

probabilities are within £0.05 of the true

probabilities from which the sample was taken”
23



IMM Example

« Suppose we have the following counts from our training set

ACGA 25 CGA 100 GA 175
ACGC 40 CGC 90 GC 140
ACGG 15 CGG 35 GG 65
ACGT 20 CGT 75 GT 120
100 « .~ 300 « . 500

x2 test: d =0.857  x?test: d=0.140

As(ACG) = 0.857 x 100/400 = 0.214
M(CG) =0 (d<0.5, ¢(CG) < 400)
M(G) =1 (c(G) > 400)

24



IMM Example (Continued)

» Now suppose we want to calculate By ;(T'| ACG)

Pooii(T1G) = L(G)P(T | G) + (1= 24,(G))Poni o(T)
=P(T|G)

P2 (T 1 CG) = 4,(CG)P(T | CG)+ (1= 2,(CG))Pyp (T | G)
= P(T|G)
Pyis(T | ACG) = 2,(ACG)P(T | ACG) +(1— 4,(ACG)) Py o(T | CG)
=0.214xP(T | ACG)+(1-0.214)x P(T | G)
=0.214x0.2+(1-0.214)x0.24
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Gene Recognition in GLIMMER

« Essentially ORF classification
— Train and estimate IMMs

* For each ORF

— calculate the probability of the ORF sequence in
each of the 6 possible reading frames

— if the highest scoring frame corresponds to the
reading frame of the ORF, mark the ORF as a gene

* For overlapping ORFs that look like genes
— score overlapping region separately
— predict only one of the ORFs as a gene

26



Gene Recognition in GLIMMER
B Stop codons (TAA, TAG, TGA) (long hash marks)
*3 I lrtc d?m(ATQ‘_?T!TT L h| hnhTrk)I | |

+2 | | | | | | Ll 0l
+1 I | | 7))
AL | | Ll il /TI I NI GEJ
-2 | | | 1 / I | || | I ©
3 | | TRV L | | =
/7 o
ORF meeting length requirement JCVI %
3
Ll | I 1 e e e . SRR A O ;
| N
| |
e — L] | I
| | 1| |

Low scoring ORF High scoring ORF

27


http://manatee.sourceforge.net/jcvi/pdf/overview.pdf

GLIMMER Experiment

« 8" order IMM vs. 5" order Markov model
* Trained on 1168 genes (ORFs really)
« Tested on 1717 annotated (more or less known) genes

28



GLIMMER Results

TP FN FP & TP?
Model Genes Genes Additional
found missed genes
GLIMMER IMM 1680 (97.8%) 37 209
5th_Order Markov 1574 (91.7%) 143 104

The first column indicates how many of the 1717 annotated genes in H.influenzae
were found by each algorithm. The ‘additional genes’ column shows how many extra
genes, not included in the 1717 annotated entries, were called genes by each method.

 GLIMMER has greater sensitivity than the baseline
 It's not clear whether its precision/specificity is better

29



Eukaryotic and Comparative
Gene Finding

Key concepts

 Incorporating sequence signals into gene finding with
HMMs

* Modeling durations with generalized HMMs (GENSCAN)

* Modeling conversation with pair HMMs

« Related genomes as an additional source of evidence for
gene finding

« Extending GENSCAN to emits pairs of observed
variables

* Modern gene finding and genome annotation

30



Eukaryotic Gene Structure

31



Splice Signals Example

donor sites

5’ splice site

acceptor sites

3’ splice site

TTTTTTTzl g

s [ ————
—_—— — U I~ I S o ES b —1

Figures from Yi Xing
exon

* There are significant dependencies among non-adjacent
positions in donor splice signals

 Informative for inferring hidden state of HMM
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Hidden Markov Model (HMM)

Hidden states
— {fair, biased} for coin tossing
— {Exon, Intron, Intergenic} for Eukaryotic gene

Emission symbols

— {H, T} for coin tossing

— {A, T, C, G} for DNA sequence

Emission probability from state to symbol
— P(A | exon) =0.85, P(A | intron) = 0.05
Transition probability among states

— P(Exon | Intergenic)

33



Parsing a DNA Sequence

 The HMM Viterbi path represents a parse of a given
sequence, predicts exons, acceptor sites, introns, etc.

Hidden Intergenic  5’UTR Exon Intron
State

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA

sequence

« How can we properly model the transitions from one
state to another and the emissions of sequences?

34



Length Distributions of Introns/Exons

# of Introns
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Figure from Burge & Karlin, Journal of Molecular Biology, 1997

35



Duration Modeling in HMMs

 Semi-Markov models are well-motivated for some
sequence elements (e.g. exons)

— Semi-Markov: explicitly model length duration of hidden
states

— Also called generalized hidden Markov model (GHMM)
« HMM emits single bases

« Semi-Markov or GHMM emits sequences
— Duration is sequent length

36



GHMM models DNA Sequences

* Given a parse wt with the hidden states {¢,, ¢,, ...} and
sequence segments {x,, x,, ..., x,} with lengths {d,, d,,
..., d } for a sequence X

91 q>

Hidden Intergenic  5’'UTR Exon Intron

state

S e g m e n t ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA
X1 X2

Transition probability

« Joint probability P(r, X) =
ao,1fq1(d1)P(x1 191, dy) [1i= ak—l,quk (dx)P(xldy, qi)

Length probability from previous distributions
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The GENSCAN HMM for Eukaryotic
Gene Finding [Burge & Karlin ‘97]

Each shape represents a functional unit S
of a gene or genomic region < S
0 g

S

S

ks

o

Pairs of intron/exon units represent %
the different ways an intron can interrupt g
S

a coding sequence (after 15t base in codon, S
c

after 2" base or after 3" base) 5
Esngl o3

(single-exon GEJ)

gene) D

5

Complementary submodel (pm_ (polyA <
(not shown) detects genes on s signal) 5
Forward (+) strand Forward (Hstrand -

opposite DNA strand

(intergenic
region)



Parsing a DNA Sequence
The Viterbi path represents @ @ Q

a parse of a given sequence, l’\’:

i
predicting exons, introns, etc. ?0
Vo

P

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA

39



Comparative methods

* genes are among the most conserved elements in the
genome

—=use conservation to help infer locations of genes

e some signals associated with genes are short and
occur frequently

—use conservation to eliminate from consideration
false candidate sites

40



Conservation as powerful
information source
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TWINSCAN

Korf et al., Bioinformatics 2001

 prediction with TWINSCAN
given: a sequence to be parsed, x
using BLAST, construct a conservation sequence, c
have HMM simultaneously parse (using Viterbi) x and ¢

* training with TWINSCAN

given: set of training sequences X with known gene
structure annotations

for each x in X
construct a conservation sequence c for x
infer emission parameters for both x and ¢

42



Conservation Sequences in TWINSCAN

» before processing a given sequence, TWINSCAN first
computes a corresponding conservation sequence

ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC
flzll ---------- N RE RN NN RN N

| |

matched unaligned mismatched

Given: a sequence of length n, a set of aligned BLAST matches
c[1...n] =unaligned
sort BLAST matches by alignment score
for each BLAST match & (from best to worst)
for each position i covered by A
if c[]] == unaligned
cli] = hli]
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Conservation Sequence Example

given
sequence

significant
BLAST
matches
ordered from
best to worst

resulting
conservation
sequence

ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC

ATGGACCGCTTCAGC

A EERRE R RN
ACGCACCGCTTCATC
AGCATGGTATCC

[Pl el
ATTTA AGAAGGGTCACC

U

ATCTA
ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC
I N B RN R N RN
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Modeling Sequences in TWINSCAN

* eac
— 1
— 1

N state “emits” two sequences
ne given DNA sequence, x

ne conservation sequence, ¢

it treats them as conditionally independent given the state

Pr(xiaci 1q) = Pr(di 19) Pr(xi |q9di) PI‘(CZ. |q9di)

X; ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC
C, Il=1l.eee.n. AR EEE AR RN R R

l

o~

d,

l 45



Modeling Sequences in TWINSCAN

conservation sequence is treated just as a string over a
3-character alphabet (| , : , .)

conservation sequence emissions modeled by
— inhomogeneous 2"%-order chains for splice sites
— homogeneous 5™"-order Markov chains for other states

like GENSCAN, based on hidden semi-Markov models

algorithms for learning, inference same as GENSCAN
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TWINSCAN vs. GENSCAN

conservation is

neither necessary
nor sufficient to
A predict an exon
60000 70000

80000

B mouse alignments

B RefSeq (gold standard)
GENSCAN prediction

B TWINSCAN prediction

b 90000 100000
lllll / | O S B R PR PR | T F & &k PR s | T T T ¥ T 1 T T 11T 7171 T T T T T 711
/ [ I 20 (0mOoD Of mel Cofme (@0 COmPMIMmMEDD | M0INOD D HonE 1 S mEE=) Pong(m DCEm o0 m
I I 1 b1 Il . l I
— N
— S M cuiiees co s auGie msbe: el & Zesmcdieees - Sl m amiimmens ssiiiasses 2 g 4
B C
I I — — mam

R 58900 59000 / 59100 59200 59300

TWINSCAN correctly omits this
exon prediction because
conserved region ends within it

92500 T 93000 9300 94000 - I 94500 I

TWINSCAN correctly predicts both
splice sites because they are within the

aligned regions
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GENSCAN vs. TWINSCAN:
Empirical Comparison

100%

5 @ Twinscan o TP
%% T 5 genscan sensitivity (Sn) =
80% TP + FN
70% p
60% o
specificity (Sp) =
50% P ty (5p) TP + FP

40%
30%

note: the definition of

560 | specificity here is
10% r | | somewhat nonstandard;
- N — | | | it's the same as
GeneSn GeneSp ExonSn Exon Sp Nt Sn Nt Sp pr ecision
A J \.  \. J
Y Y Y

genes exactly exons exactly nucleotides
correct? correct? correct?

Figure from Flicek et al., Genome Research, 2003
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Accuracy of TWINSCAN as a

Function of Sequence Coverage

16%
14%
12%
10%
8%
6%
4%

2% A
0% -

[l Sensitivity

Specificity

Genscan  1Xmouse 2X mouse 3Xmouse 4X mouse Assembly Syntenic

(none) T T Regions

very crude mouse good mouse
genome sequence genome sequence
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SLAM

Pachter et al., RECOMB 2001

 prediction with SLAM
given: a pair of sequences to be parsed, x and y
find approximate alignment of x and y

run constrained Viterbi to have HMM simultaneously
parse and align x and y

* training with SLAM
given: a set of aligned pairs of training sequences X
foreach x, yin X
infer emission/alignment parameters for both x and y

50



Pair Hidden Markov Models

each non-silent state emits one or a pair
of characters

H: homology (match) state

|: insert state

END

D: delete state

51



PHMM Paths = Alignments

sequence 1: AAGCGC
sequence 2:ATGTC

hidden: BHH | | HDHE
AAGCG C
AT GTC

observed:

52



Transition Probabillities

e probabilities of moving between states at
each step

state i+|

state |




Emission Probabilities

Deletion (D)

e,(x,)

single character

Insertion (I)

e (y;)

single character

Homology (H)

ey (X, ;)

0.13

0.03

0.06

0.03

0.03

0.13

0.03

0.06

0.06

0.03

0.13

0.03

0.03

0.06

0.03

0.13

pairs of characters




PHMM Viterbi

e probability of most likely sequence of hidden states
generating length i prefix of x and length j prefix of y,

with the last state being:

v (i — 1,5 — Dtgm,
H v (i, 7) = ey (z4,y;) max < v! (i — 1,5 — 1)trm,
vP(i - 1,5 — )tpn
v (3,5 — Ditur,
| v (4,7) = er(y;) max v!(4,5 — 1)t
'UD(iaj _ l)tDI
UH(Z T laj)tHDa
D UD(iaj) — GD(CU,,;) max UI(i _ 1aj)tID7
vP(i —1,5)tpp

e note that the recurrence relations here allow /—D and
D—1 transitions



PHMM Alignment

e calculate probability of most likely alignment

'UE(m, n) = maa:('uM(m, NtHE, 'UI(m, n)tie, 'UD(m, n)tpE)
e traceback, as in Needleman-Wunsch (NW), to
obtain sequence of state states giving highest

probability
HIDHHDDIIHH...
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Parameter Training

* supervised training
— given: sequences and correct alignments

— do: calculate parameter values that maximize
joint likelihood of sequences and alignments

* unsupervised training
— given: sequence pairs, but no alignments

— do: calculate parameter values that maximize
marginal likelinood of sequences (sum over
all possible alignments)

61



Generalized Pair HMMs

* Represent a parse m, as a sequence of states and a
sequence of associated lengths for each input sequence

sequence of
hidden states

{%,%, 4, <\1>—» %
d=1{d,d,,. d}L\ A

— {819 €50
pair of sequences
| | may be gaps generated by
pair of duration in the sequences  hidden state

times generated
by hidden state g AM: Pachter et al. RECOMB 2001 4



Generalized Pair HMMs

representing a parse m, as a sequence of states and
associated lengths (durations)

q={Q1DQ29'“9qn}
d=1{d.d,,..d)} e =1{e.,e,,...,e }

., n

the joint probability of generating parse &t and
sequences x and y

P(x,y,m)=a,,, P(d.e | q)P(x.y 1q,.d,e)x

n

| |a,..,P(d, e, 1g)P(x, .y, 1q,.d,.e,)

k=2
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Generalized Pair HMM Algorithms
» Generalized HMM Forward Algorithm

fl(i)=2§[fk(i_d) a, P(dlq,) P(xii—d+1 |5]zvd)]

k d=1

» Generalized Pair HMM Algorithm

D D
=1

F@GN=I YNV fili-d,j-e) a,P(d.elq) P(x_s,Y) 0 1q;.d,0)]

d=1 e

 Viterbi: replace sum with max
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Prediction in SLAM

 could find alignment and gene predictions by running
Viterbi

* to make it more efficient

— find an approximate alignment (using a fast anchor-
based approach)

— each base in x constrained to align to a window of

size hiny
x /\ I\
y | |

h

» analogous to banded alignment methods
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GENSCAN, TWINSCAN, & SLAM

Nucleotide level Exon level
Test set SN SP AC SN SP (SN+SP)/2 ME WE
The ROSETTA set
ROSETTA 0.935 0.978 0.949 0.833 0.829 0.831 0.048 0.047
SGP-1 0.940 0.960 0.940 0.700 0.760 0.730 0.120 0.040
SLAM 0.951 0.981 0.960 0.783 0.755 0.769 0.038 0.057
TWINSCAN.p 0.960 0.941 0.940 0.855 0.824 0.840 0.045 0.081
TWINSCAN 0.984 0.889 0.923 0.839 0.767 0.803 0.034 0.118
GENSCAN 0.975 0.908 0.929 0.817 0.770 0.793 0.057 0.107
HoxA
SLAM 0.852 0.896 0.864 0.727 0.533 0.630 0.000 0.333
TWINSCAN.p 0.976 0.829 0.896 0.773 0.531 0.652 0.000 0.312
TWINSCAN 0.949 0.511 0.704 0.591 0.173 0.382 0.000 0.707
SGP-2 0.640 0.637 0.619 0.409 0.173 0.291 0.091 0.596
GENSCAN 0.932 0.687 0.796 0.545 0.235 0.390 0.000 0.569
Elastin
SLAM 0.876 0.981 0.926 0.802 0.859 0.831 0.121 0.059
TWINSCAN.p 0.942 0.950 0.945 0.879 0.889 0.884 0.066 0.056
TWINSCAN 0.933 0.877 0.903 0.835 0.826 0.831 0.110 0.120
SGP-2 0.755 0.998 0.873 0.593 0.900 0.291 0.352 0.017
GENSCAN 0.947 0.766 0.852 0.835 0.731 0.783 0.121 0.231

The measures of sensitivity SN = TP/TP + FN and specificity SP = TP/TP + FP (where TP = true positives, TN = true negatives, FP = false positives
and FN = false negatives) are shown at both the nucleotide and exon level. ME is entirely missed exons, WE is wrong exons, and the
approximate correlation AC = 1/2 (TP/TP + FN + TP/TP + FP + TN/TN + FP + TN/TN + FN) — 1 summarizes the overall nucleotide sensitivity
and specificity by one number. Within each of the three data sets the methods are divided into three classes: those operating on a syntenic
DNA pair, those operating on a human sequence using as evidence matches against a database of mouse sequences, and a single-organism
gene finder (GENSCAN).
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TWINSCAN vs. SLAM

both use multiple genomes to predict genes
both use generalized HMMs
TWINSCAN

— takes as an input a genomic sequence, and a conservation
sequence computed from an informant genome

— models probability of both sequences; assumes they're
conditionally independent given the state

— predicts genes only in the genomic sequence
SLAM
— takes as input two genomic sequences
— models joint probability of pairs of aligned sequences
— can simultaneously predict genes and compute alignments
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Modern Genome Annotation

 RNA-Seq, mass spectrometry, and other technologies
provide powerful information for genome annotation

68



Modern Genome Annotation
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Modern Genome Annotation

protein-coding genes, isoforms,
translated regions
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