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Outline for Gene Finding

• Interpolated Markov Model
– Finding bacterial genes 

• Generalized Hidden Markov Model
– Finding eukaryotic genes
– Comparative information
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Interpolated Markov Models 
for Gene Finding

Key concepts
• the gene-finding task
• the trade-off between potential predictive value and 

parameter uncertainty in choosing the order of a Markov 
model

• interpolated Markov models
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The Gene Finding Task
Given: an uncharacterized DNA sequence
Do: locate the genes in the sequence, including the 

coordinates of individual exons and introns
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Splice Signals Example

Figures from Yi Xing

donor sites acceptor sites

exon exon

-1-2-3 1 2 3 4 5 6

• There are significant dependencies among non-adjacent 
positions in donor splice signals

• Informative for inferring hidden state of HMM
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Sources of Evidence for Gene Finding

• Signals: the sequence signals (e.g. splice junctions) 
involved in gene expression (e.g., RNA-seq reads)

• Content: statistical properties that distinguish 
protein-coding DNA from non-coding DNA (focus in 
this lecture)

• Conservation: signal and content properties that are 
conserved across related sequences (e.g. 
orthologous regions of the mouse and human 
genome)
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Gene Finding: Search by Content

• Encoding a protein affects the statistical properties of 
a DNA sequence
– some amino acids are used more frequently than 

others (Leu more prevalent than Trp)
– different numbers of codons for different amino 

acids (Leu has 6, Trp has 1)
– for a given amino acid, usually one codon is used 

more frequently than others
• this is termed codon preference
• these preferences vary by species
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Codon Preference in E. Coli
AA      codon    /1000
----------------------
Gly GGG       1.89
Gly GGA       0.44
Gly GGU      52.99
Gly GGC      34.55

Glu GAG      15.68
Glu GAA      57.20

Asp     GAU      21.63
Asp     GAC      43.26
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Reading Frames

• A given sequence may encode a protein in any of the 
six reading frames

G C T A C G G A G C T T C G G A G C
C G A T G C C T C G A A G C C T C G
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Open Reading Frames (ORFs)

G T T A T G G C T  • • • T C G T G A T T

• An ORF is a sequence that
– starts with a potential start codon (e.g., ATG)
– ends with a potential stop codon, in the same 

reading frame (e.g., TAG, TAA, TGA)
– doesn’t contain another stop codon in-frame
– and is sufficiently long (say > 100 bases)

• An ORF meets the minimal requirements to be a 
protein-coding gene in an organism without introns
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Markov Models & Reading Frames
• Consider modeling a given coding sequence
• For each “word” we evaluate, we’ll want to consider its 

position with respect to the reading frame we’re assuming

G C T A C G G A G C T T C G G A G C

G C T A C G

reading frame

G is in 3rd codon position

C T A C G G G is in 1st position

T A C G G A A is in 2nd position

• Can do this using an inhomogeneous model
11



Inhomogeneous Markov Model

• Homogenous Markov model: transition probability 
matrix does not change over time or position

• Inhomogenous Markov model: transition probability 
matrix depends on the time or position
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Higher Order Markov Models
• Higher order models remember more “history”
– n-order

• Additional history can have predictive value
• Example:

– predict the next word in this sentence fragment  
“…you__” (are, give, passed, say, see, too, …?)

– now predict it given more history
“…can you___”
“…say can you___”

“…oh say can you___”
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A Fifth Order Inhomogeneous 
Markov Model

GCTAC

AAAAA

TTTTT

CTACG

CTACA
CTACC

CTACT

start

position 2
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A Fifth Order Inhomogeneous 
Markov Model

GCTAC

AAAAA

TTTTT

CTACG

CTACA
CTACC

CTACT

start

AAAAA

TTTTT

TACAG

TACAA
TACAC

TACATGCTAC

AAAAA

TTTTT

CTACG

CTACA
CTACC

CTACT

position 2 position 3 position 1

Trans. 
to states
in pos. 2
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Selecting the Order of a 
Markov Model

• But the number of parameters we need to estimate 
grows exponentially with the order
– for modeling DNA we need                 parameters 

for an nth order model

• The higher the order, the less reliable we can expect 
our parameter estimates to be

• Suppose we have 100k bases of sequence to 
estimate parameters of a model
– for a 2nd order homogeneous Markov chain, we’d 

see each history 6250 times on average
– for an 8th order chain, we’d see each history ~ 1.5 

times on average

)4( 1+nO
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Interpolated Markov Models

• The IMM idea: manage this trade-off by interpolating 
among models of various orders

• Simple linear interpolation:
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Interpolated Markov Models

• We can make the weights depend on the history
– for a given order, we may have significantly more 

data to estimate some words than others
• General linear interpolation
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The GLIMMER System
[Salzberg et al., Nucleic Acids Research, 1998]

• System for identifying genes in bacterial genomes
• Uses 8th order, inhomogeneous, interpolated Markov 

models
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IMMs in GLIMMER
• How does GLIMMER determine the      values?
• First, let’s express the IMM probability calculation 

recursively
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• Let                         be the number of times we see the 
history                     in our training set
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IMMs in GLIMMER
• If we haven’t seen                     more than 400 times, 

then compare the counts for the following:
1,..., -- ini xx

axx ini ,,..., 1--

cxx ini ,,..., 1--

gxx ini ,,..., 1--

txx ini ,,..., 1--

axx ini ,,..., 11 -+-

cxx ini ,,..., 11 -+-

gxx ini ,,..., 11 -+-

txx ini ,,..., 11 -+-

nth order history + base (n-1)th order history + base

• Use a statistical test to assess whether the 
distributions of      depend on the order
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IMMs in GLIMMER

axx ini ,,..., 1--

cxx ini ,,..., 1--

gxx ini ,,..., 1--

txx ini ,,..., 1--

axx ini ,,..., 11 -+-

cxx ini ,,..., 11 -+-

gxx ini ,,..., 11 -+-

txx ini ,,..., 11 -+-

nth order history + base (n-1)th order history + base

• Null hypothesis in      test:      distribution is 
independent of order

• Define 
• If      is small we don’t need the higher order history

2c
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IMMs in GLIMMER
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• Putting it all together

• why 400?
- “gives ~95% confidence that the sample 

probabilities are within ±0.05 of the true 
probabilities from which the sample was taken”
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IMM Example

ACGA 25
ACGC 40
ACGG 15
ACGT 20

___
100

CGA  100
CGC 90
CGG 35
CGT 75

___
300

GA  175
GC 140
GG 65
GT 120

___
500

• Suppose we have the following counts from our training set

χ2 test: d = 0.857 χ2 test: d = 0.140 

λ3(ACG) = 0.857 × 100/400 = 0.214   

λ2(CG) = 0    (d < 0.5,  c(CG) < 400)  

λ1(G) = 1    (c(G) > 400)  
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IMM Example (Continued)
• Now suppose we want to calculate
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Gene Recognition in GLIMMER

• Essentially ORF classification
– Train and estimate IMMs 

• For each ORF 
– calculate the probability of the ORF sequence in 

each of the 6 possible reading frames
– if the highest scoring frame corresponds to the 

reading frame of the ORF, mark the ORF as a gene
• For overlapping ORFs that look like genes

– score overlapping region separately
– predict only one of the ORFs as a gene
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Gene Recognition in GLIMMER

27
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GLIMMER Experiment

• 8th order IMM vs. 5th order Markov model
• Trained on 1168 genes (ORFs really)
• Tested on 1717 annotated (more or less known) genes

28



GLIMMER Results 
TP FN FP & TP?

• GLIMMER has greater sensitivity than the baseline
• It’s not clear whether its precision/specificity is better
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Eukaryotic and Comparative 
Gene Finding

Key concepts
• Incorporating sequence signals into gene finding with 

HMMs
• Modeling durations with generalized HMMs (GENSCAN)
• Modeling conversation with pair HMMs
• Related genomes as an additional source of evidence for 

gene finding
• Extending GENSCAN to emits pairs of observed 

variables
• Modern gene finding and genome annotation

30



Eukaryotic Gene Structure
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Splice Signals Example

Figures from Yi Xing

donor sites acceptor sites

exon exon

-1-2-3 1 2 3 4 5 6

• There are significant dependencies among non-adjacent 
positions in donor splice signals

• Informative for inferring hidden state of HMM
32



Hidden Markov Model (HMM)
• Hidden states

– {fair, biased} for coin tossing
– {Exon, Intron, Intergenic} for Eukaryotic gene

• Emission symbols
– {H, T} for coin tossing
– {A, T, C, G} for DNA sequence

• Emission probability from state to symbol
– P(A | exon) = 0.85, P(A | intron) = 0.05

• Transition probability among states
– P(Exon | Intergenic)
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ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA

Parsing a DNA Sequence

34

• The HMM Viterbi path represents a parse of a given 
sequence, predicts exons, acceptor sites, introns, etc.

Observed 
sequence

Hidden 
state

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA

5’UTR Exon IntronIntergenic

• How can we properly model the transitions from one 
state to another and the emissions of sequences?
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Length Distributions of Introns/Exons

geometric dist.
provides good fit

Introns Initial exons

Internal exons Terminal exons

geometric dist.
provides poor fit
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• Semi-Markov models are well-motivated for some 
sequence elements (e.g. exons)
– Semi-Markov: explicitly model length duration of hidden 

states
– Also called generalized hidden Markov model (GHMM)

• HMM emits single bases
• Semi-Markov or GHMM emits sequences

– Duration is sequent length

Duration Modeling in HMMs
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ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA

GHMM models DNA Sequences

37

• Given a parse π with the hidden states {q1, q2, …} and 
sequence segments {x1, x2, …, xn} with lengths {d1, d2, 
…, dn} for a sequence X

Segment

Hidden 
state

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA

5’UTR Exon IntronIntergenic

• Joint probability 𝑃 𝜋, 𝑋 =
𝑎!,#𝑓$# 𝑑# 𝑃(𝑥#|𝑞#, 𝑑#)∏%&'

( 𝑎%)#,%𝑓$! 𝑑% 𝑃 𝑥% 𝑑%, 𝑞%

q1 q2

x1 x2

Length probability from previous distributions

Transition probability



Each shape represents a functional unit 
of a gene or genomic region

Pairs of intron/exon units represent
the different ways an intron can interrupt
a coding sequence  (after 1st base in codon, 
after 2nd base or after 3rd base)

Complementary submodel
(not shown) detects genes on 
opposite DNA strand

The GENSCAN HMM for Eukaryotic 
Gene Finding [Burge & Karlin ‘97]
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ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA

Parsing a DNA Sequence
The Viterbi path represents 
a parse of a given sequence,
predicting exons, introns, etc.

GAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAAACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGA

39



Comparative methods
• genes are among the most conserved elements in the 

genome
Þuse conservation to help infer locations of genes

• some signals associated with genes are short and 
occur frequently
Þuse conservation to eliminate from consideration 

false candidate sites

40



Conservation as powerful 
information source

Scale
chr17:

Rhesus
Mouse

Dog
Elephant

Opossum
Chicken

X_tropicalis
Zebrafish

5 kb hg19
78,185,000 78,190,000

Basic Gene Annotation Set from ENCODE/GENCODE Version 7

GERP scores for mammalian alignments

Multiz Alignments of 46 Vertebrates

SGSH
SGSH

SGSH
SLC26A11
SLC26A11

GERP

4.9 _

-9.8 _

0 -
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TWINSCAN 
Korf et al., Bioinformatics 2001

• prediction with TWINSCAN
given: a sequence to be parsed, x
using BLAST, construct a conservation sequence, c
have HMM simultaneously parse (using Viterbi) x and c

• training with TWINSCAN
given: set of training sequences X with known gene 

structure annotations
for each x in X

construct a conservation sequence c for x
infer emission parameters for both x and c
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Conservation Sequences in TWINSCAN
• before processing a given sequence, TWINSCAN first 

computes a corresponding conservation sequence

ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC
||:||..........|:|:|||||||||:||:|||::||

matched unaligned mismatched

Given: a sequence of length n, a set of aligned BLAST matches
c[1...n] = unaligned
sort BLAST matches by alignment score
for each BLAST match h (from best to worst)

for each position i covered by h
if c[i] == unaligned

c[i] = h[i]
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Conservation Sequence Example
ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC

ATTTA
||:||
ATCTA

ATGGACCGCTTCAGC
|:|:|||||||||:|
ACGCACCGCTTCATC

AGCATGGTATCC
||:|:|||::||
AGAAGGGTCACC

ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC
||:||..........|:|:|||||||||:||:|||::||

given
sequence

significant 
BLAST 
matches
ordered from
best to worst

resulting 
conservation 
sequence

44



Modeling Sequences in TWINSCAN
• each state “emits” two sequences

– the given DNA sequence, x
– the conservation sequence, c

• it treats them as conditionally independent given the state 
),|Pr(  ),|Pr(  )|Pr()|,Pr( iiiiiii dqcdqxqdqcx =

ATTTAGCCTACTGAAATGGACCGCTTCAGCATGGTATCC
||:||..........|:|:|||||||||:||:|||::||

q

ic
ix

€ 

di 45



Modeling Sequences in TWINSCAN

• conservation sequence is treated just as a string over a   
3-character alphabet (| , : , .) 

• conservation sequence emissions modeled by
– inhomogeneous 2nd-order chains for splice sites
– homogeneous 5th-order Markov chains for other states

• like GENSCAN, based on hidden semi-Markov models

• algorithms for learning, inference same as GENSCAN
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TWINSCAN vs. GENSCAN
mouse alignments
RefSeq (gold standard)
GENSCAN prediction
TWINSCAN prediction

TWINSCAN correctly omits this 
exon prediction because 
conserved region ends within it

TWINSCAN correctly predicts both 
splice sites because they are within the 
aligned regions

conservation is 
neither necessary 
nor sufficient to 
predict an exon
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GENSCAN vs. TWINSCAN: 
Empirical Comparison

Figure from Flicek et al., Genome Research, 2003

FNTP
TP    (Sn)y sensitivit
+

=

FPTP
TP    (Sp)y specificit
+

=

note: the definition of 
specificity here is 
somewhat nonstandard; 
it’s the same as 
precision

genes exactly
correct?

exons exactly
correct?

nucleotides
correct?
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Accuracy of TWINSCAN as a 
Function of Sequence Coverage

very crude mouse
genome sequence

good mouse
genome sequence
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SLAM 
Pachter et al., RECOMB 2001

• prediction with SLAM
given: a pair of sequences to be parsed, x and y
find approximate alignment of x and y
run constrained Viterbi to have HMM simultaneously 

parse and align x and y

• training with SLAM
given: a set of aligned pairs of training sequences X
for each x, y in X

infer emission/alignment parameters for both x and y

50



Pair Hidden Markov Models
• each non-silent state emits one or a pair 

of characters

I: insert state

D: delete state

H: homology (match) state
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PHMM Paths = Alignments

H
A
A

H
A
T

I
G

I
C

H
G
G

D

T

H
C
C

hidden:

observed:

sequence 1: AAGCGC
sequence 2: ATGTC

B E
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Transition Probabilities
• probabilities of moving between states at 

each step

B H I D E
B 1-2δ-τ δ δ τ

H 1-2δ-τ δ δ τ

I 1-ε-τ ε τ

D 1-ε-τ ε τ

E

state i+1

st
at

e 
i
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Emission Probabilities

A 0.3

C 0.2

G 0.3

T 0.2

A 0.1

C 0.4

G 0.4

T 0.1

A C G T
A 0.13 0.03 0.06 0.03

C 0.03 0.13 0.03 0.06

G 0.06 0.03 0.13 0.03

T 0.03 0.06 0.03 0.13

Homology (H)Insertion (I)Deletion (D)

single character single character pairs of characters

eH (xi, yj )

€ 

eD (xi)

€ 

eI (y j )
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PHMM Viterbi
• probability of most likely sequence of hidden states 

generating length i prefix of x and length j prefix of y, 
with the last state being:

H

I

D

• note that the recurrence relations here allow I®D and
D®I transitions
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PHMM Alignment
• calculate probability of most likely alignment 

• traceback, as in Needleman-Wunsch (NW), to 
obtain sequence of state states giving highest  
probability

HIDHHDDIIHH...
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Parameter Training

• supervised training
– given: sequences and correct alignments
– do: calculate parameter values that maximize 

joint likelihood of sequences and alignments

• unsupervised training
– given: sequence pairs, but no alignments
– do: calculate parameter values that maximize 

marginal likelihood of sequences (sum over 
all possible alignments)

61



Generalized Pair HMMs
• Represent a parse π, as a sequence of states and a 

sequence of associated lengths for each input sequence

},,,{ 21 nqqqq !
"
=

},,,{ 21 neeee !
"
=

F+P+N Einit
+

},,,{ 21 ndddd !
"
=

may be gaps
in the sequencespair of duration 

times generated 
by hidden state

sequence of 
hidden states

62SLAM: Pachter et al. RECOMB 2001

pair of sequences 
generated by 
hidden state



Generalized Pair HMMs

• representing a parse π, as a sequence of states and 
associated lengths (durations) 

• the joint probability of generating parse π and 
sequences x and y

},,,{ 21 nqqqq …

=

},,,{ 21 ndddd …

=

  

€ 

P(x,y,π ) = astart ,1P(d1,e1 | q1)P(x1,y1 | q1,d1,e1)×

                 ak−1,kP(dk ,ek | qk )P(xk ,yk | qk ,dk ,ek )
k=2

n

∏

},,,{ 21 neeee …

=
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Generalized Pair HMM Algorithms
• Generalized HMM Forward Algorithm

• Generalized Pair HMM Algorithm

• Viterbi: replace sum with max

fl (i) = fk (i− d)  akl   P(d | ql ) P(xi−d+1
i | ql,d)"# $%

d=1

D

∑
k
∑

fl (i, j) = fk (i− d, j − e) aklP(d,e | ql ) P(xi−d+1
i y j−e+1

j | ql,d,e)"# $%
e=1

D

∑
d=1

D

∑
k
∑

64



Prediction in SLAM
• could find alignment and gene predictions by running 

Viterbi
• to make it more efficient

– find an approximate alignment (using a fast anchor-
based approach)

– each base in x constrained to align to a window of 
size h in y

• analogous to banded alignment methods

x

y
h
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GENSCAN, TWINSCAN, & SLAM
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TWINSCAN vs. SLAM
• both use multiple genomes to predict genes
• both use generalized HMMs
• TWINSCAN

– takes as an input a genomic sequence, and a conservation 
sequence computed from an informant genome

– models probability of both sequences; assumes they’re 
conditionally independent given the state

– predicts genes only in the genomic sequence
• SLAM

– takes as input two genomic sequences
– models joint probability of pairs of aligned sequences
– can simultaneously predict genes and compute alignments
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Modern Genome Annotation

• RNA-Seq, mass spectrometry, and other technologies 
provide powerful information for genome annotation
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Modern Genome Annotation

69Yandell et al. Nature Reviews Genetics 2012



Modern Genome Annotation

70Mudge and Harrow Nature Reviews Genetics 2016

protein-coding genes, isoforms, 
translated regions

small RNAs

long non-coding RNAs

pseudogenes

promoters and 
enhancers


