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Goals for lecture

• Challenges of integrating high-
throughput assays

• Connecting relevant genes/proteins with 
interaction networks

• ResponseNet algorithm
• Evaluating pathway predictions
• Classes of signaling pathway prediction 

methods
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High-throughput screening
• Which genes are involved in which 

cellular processes?
• Hit: gene that affects the phenotype
• Phenotypes include:

– Growth rate
– Cell death
– Cell size
– Intensity of some reporter
– Many others 3



Types of screens

• Genetic screening
– Test genes individually or in parallel
– Knockout, knockdown (RNA interference), 

overexpression, CRISPR/Cas genome 
editing

• Chemical screening
– Which genes are affected by a stimulus?
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Differentially expressed genes

• Compare mRNA transcript levels 
between control and treatment 
conditions

• Genes whose expression changes 
significantly are also involved in the 
cellular process

• Alternatively, differential protein 
abundance or phosphorylation
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Interpreting screens

Screen 
hits

Differentially 
expressed 

genes

Very few genes detected in both
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Assays reveal different parts 
of a cellular process

KEGG
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Database representation of a “pathway”

http://www.genome.jp/kegg-bin/show_pathway%3Fhsa04012


Assays reveal different parts 
of a cellular process

Genetic screen hits

Differentially expressed genes
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Pathways connect the disjoint 
gene lists

• Can’t rely on pathway 
databases

• High-quality, low coverage

• Instead learn condition-specific 
pathways computationally

• Combine data with generic 
physical interaction networks
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Physical interactions
• Protein-protein interactions (PPI)

• Metabolic
• Protein-DNA (transcription factor-gene)

• Genes and proteins are different node 
types

Appling Graz

Yeger-Lotem2009

Prot A Prot B

TF Gene
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http://appling.cm.utexas.edu/
http://strubi.uni-graz.at/projects/lipids.htm
http://www.nature.com/ng/journal/v41/n3/full/ng.337.html


Hairball networks

• Networks are highly connected
• Can’t use naïve strategy to connect 

screen hits and differentially expressed 
genes

Yeger-Lotem2009 11

http://www.nature.com/ng/journal/v41/n3/full/ng.337.html


Identify connections within an 
interaction network

Yeger-Lotem2009
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http://www.nature.com/ng/journal/v41/n3/full/ng.337.html


Network problems
• Network inference

– Infer network structure
• Motif finding

– Identify common subgraph topologies
• Pathway or module detection

– Identify subgraphs of genes that perform 
the same function or active in same 
condition

• Network comparison, alignment, querying
• Conserved modules

– Identify modules that are shared in 
networks of multiple species/conditions 13



Network motifs
• Problem: Find subgraph topologies that are 

statistically more frequent than expected
• Brute force approach

– Count all topologies of subgraphs of size m
– Randomize graph (retain degree 

distribution) and count again
– Output topologies that are over/under 

represented

Feed-forward loop: over-
represented in regulatory 
networks

not very common
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Gene regulatory network motifs
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AP Boyle et al. Nature 512 , 453-456 (2014) doi:10.1038/nature13668



Network modules
• Modules: dense (highly-connected) 

subgraphs (e.g., large cliques or partially 
incomplete cliques)

• Problem: Identify the component modules of a 
network

• Difficulty: definition of module is not precise
– Hierarchical networks have modules at 

multiple scales
– At what scale to define modules?
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How to define a computational 
“pathway”

• Given:
– Partially directed network of known physical 

interactions (e.g. PPI, kinase-substrate, TF-
gene)

– Scores on source nodes
– Scores on target nodes

• Do:
– Return directed paths in the network 

connecting sources to targets
17



Network flow problem
• Finding an optimal route by minimizing 

transportation costs from LA to NYC
– ci,j, the cost between City i and City j
– fi,j = 1 if in route, = 0 if not
– argminf∑!,# 𝑐!,# ∗ 𝑓!,# s.t. constraints
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https://www.visualcapitalist.com/u-s-interstate-highways-transit-map/

LA

NYC

https://www.visualcapitalist.com/u-s-interstate-highways-transit-map/


ResponseNet optimization goals
• Connect screen hits and differentially 

expressed genes
• Recover sparse connections
• Identify intermediate proteins missed by 

the screens
• Prefer high-confidence interactions

• Minimum cost flow formulation can meet 
these objectives 19



Construct the interaction 
network
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Protein

Gene



Transform to a flow problem
S

T
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Max flow on graphs
S

T
22

Pump flow from 
source

Flow conserved to 
target

Incoming and 
outgoing flow 
conserved at 
each node

Each edge can 
tolerate different 
level of flow or have 
different preference 
of sending flow along 
that edge



Weighting interactions
• Probability-like confidence of the interaction

• Example evidence: edge score of 1.0
• 16 distinct publications supporting the edge

iRefWeb
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http://wodaklab.org/iRefWeb/interaction/show/1148037


Weights and capacities on edges

S

T

(wij, cij)wij from interaction 
network confidence

cij= 1
Flow capacity
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Find the minimum cost flow
S

T

Prefer no flow 
on the low-
weight edges if 
alternative paths 
exist

25

Return the edges 
with non-zero flow



Formal minimum cost flow

26

Positive flow on 
an edge incurs a 
cost

Cost is greater for 
low-weight edges

Flow on an 
edge

Parameter 
controlling the 
amount of flow from 
the source
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Flow coming in to a node 
equals flow leaving the 
node

Formal minimum cost flow
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Flow leaving the 
source equals flow 
entering the target

Formal minimum cost flow
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Flow is non-
negative and does 
not exceed edge 
capacity

Formal minimum cost flow
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Formal minimum cost flow



Linear programming
• Optimization problem is a linear program
• Canonical form

• Polynomial time complexity
• Many off-the-shelf solvers
• Practical Optimization: A Gentle Introduction

– Introduction to linear programming
– Simplex method
– Network flow

Wikipedia
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http://www.sce.carleton.ca/faculty/chinneck/po.html
http://www.sce.carleton.ca/faculty/chinneck/po/Chapter2.pdf
http://www.sce.carleton.ca/faculty/chinneck/po/Chapter3.pdf
http://www.sce.carleton.ca/faculty/chinneck/po/Chapter10.pdf
http://en.wikipedia.org/wiki/Linear_programming


ResponseNet pathways 

• Identifies pathway members that are 
neither hits nor differentially expressed

• Ste5 recovered when STE5 deletion is the 
perturbation 32



ResponseNet summary
• Advantages

– Computationally efficient
– Integrates multiple types of data
– Incorporates interaction confidence
– Identifies biologically plausible networks

• Disadvantages
– Direction of flow is not biologically meaningful
– Path length not considered
– Requires sources and targets
– Dependent on completeness and quality of input 

network 33



Evaluating pathway predictions
• Unlike PIQ, we don’t have a complete 

gold standard available for evaluation

• Can simulate “gold standard” pathways 
from a network

• Compare relative performance of multiple 
methods on independent data
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Evaluating pathway predictions

35Ritz2016 https://www.nature.com/articles/npjsba20162.pdf

http://www.nature.com/articles/npjsba20162
https://www.nature.com/articles/npjsba20162.pdf


Evaluating pathway predictions
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Ritz2016

http://www.nature.com/articles/npjsba20162


Evaluating pathway predictions
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MacGilvray2018

• PR curves can evaluate node or edge 
recovery but not the global pathway 
structure

https://doi.org/10.1101/176230


Evaluation beyond pathway 
databases

• Natural language processing can also 
help semi-automated evaluation

38

• Literome

• Chilibot

• iHOP

http://erome.azurewebsites.net
http://www.chilibot.net/
http://www.ihop-net.org/UniPub/iHOP/


Classes of 
pathway 

prediction 
algorithms
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Are edges 
important?

No

Network 
diffusion

Yes

Sources 
and 

targets?

No

Spanning 
tree Steiner tree

Yes

Next slide…
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Have sources 
and targets

What path 
properties are 

important?

Total path 
length or 

score

Shortest 
paths

Total source-
target 

connectivity

Network flow

Connectivity 
in minimum 
cost network

Steiner tree

Complex 
properties

Integer 
program

Symbolic 
solver

Graphical 
model

Classes of pathway prediction 
algorithms



Alternative pathway 
identification algorithms

• k-shortest paths
– Ruths2007
– Shih2012

• Random walks / network diffusion / circuits
– Tu2006
– eQTL electrical diagrams (eQED)
– HotNet

• Integer programs
– Signaling-regulatory Pathway INferencE (SPINE)
– Chasman2014
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http://link.springer.com/chapter/10.1007/978-3-540-73060-6_8
http://bioinformatics.oxfordjournals.org/content/28/12/i49.full
http://bioinformatics.oxfordjournals.org/content/22/14/e489.abstract
http://msb.embopress.org/content/4/1/162
http://online.liebertpub.com/doi/abs/10.1089/cmb.2010.0265
http://bioinformatics.oxfordjournals.org/content/23/13/i359.long
http://msb.embopress.org/content/10/11/759


Alternative pathway 
identification algorithms

• Path-based objectives
– Physical Network Models (PNM)
– Maximum Edge Orientation (MEO)
– Signaling and Dynamic Regulatory Events Miner 

(SDREM)
• Steiner tree

– Prize-collecting Steiner forest (PCSF)
– Belief propagation approximation (msgsteiner)
– Omics Integrator implementation

• Hybrid approaches
– PathLinker: random walk + shortest paths
– ANAT: shortest paths + Steiner tree
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http://online.liebertpub.com/doi/abs/10.1089/1066527041410382
http://nar.oxfordjournals.org/content/39/4/e22.full
http://www.genome.org/cgi/doi/10.1101/gr.138628.112
http://journals.plos.org/ploscompbiol/article%3Fid=10.1371/journal.pcbi.1002887
http://www.pnas.org/content/108/2/882.long
http://dx.doi.org/10.1371/journal.pcbi.1004879
http://www.nature.com/articles/npjsba20162
http://msb.embopress.org/content/5/1/248


Recent developments in 
pathway discovery

• Multi-task learning: jointly model several 
related biological conditions
– ResponseNet extension: SAMNet
– Steiner forest extension: Multi-PCSF
– SDREM extension: MT-SDREM

• Temporal data
– ResponseNet extension: TimeXNet
– Steiner forest extension and ST-Steiner
– Temporal Pathway Synthesizer 43

http://pubs.rsc.org/en/Content/ArticleLanding/2012/IB/c2ib20072d
http://www.worldscientific.com/doi/abs/10.1142/9789814583220_0005
http://journals.plos.org/ploscompbiol/article%3Fid=10.1371/journal.pcbi.1003943
http://journals.plos.org/ploscompbiol/article%3Fid=10.1371/journal.pcbi.1003323
http://journal.frontiersin.org/article/10.3389/fmicb.2015.00730/full
https://doi.org/10.1101/256693
https://doi.org/10.1101/209676


Condition-specific 
genes/proteins used as input

• Genetic screen hits (as causes or effects)
• Differentially expressed genes
• Transcription factors inferred from gene 

expression
• Proteomic changes (protein abundance or post-

translational modifications)
• Kinases inferred from phosphorylation
• Genetic variants or DNA mutations
• Enzymes regulating metabolites
• Receptors or sensory proteins
• Protein interaction partners
• Pathway databases or other prior knowledge 44


