Identifying Signaling Pathways

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2020
Daifeng Wang
daifeng.wang@wisc.edu

Goals for lecture

- Challenges of integrating highthroughput assays
- Connecting relevant genes/proteins with interaction networks
- ResponseNet algorithm
- Evaluating pathway predictions
- Classes of signaling pathway prediction methods

High-throughput screening

- Which genes are involved in which cellular processes?
- Hit: gene that affects the phenotype
- Phenotypes include:
 - Growth rate
 - Cell death
 - Cell size
 - Intensity of some reporter
 - Many others

Types of screens

- Genetic screening
 - Test genes individually or in parallel
 - Knockout, knockdown (RNA interference), overexpression, CRISPR/Cas genome editing
- Chemical screening
 - Which genes are affected by a stimulus?

Differentially expressed genes

- Compare mRNA transcript levels between control and treatment conditions
- Genes whose expression changes significantly are also involved in the cellular process
- Alternatively, differential protein abundance or phosphorylation

Interpreting screens

Very few genes detected in both

Assays reveal different parts of a cellular process

Assays reveal different parts of a cellular process

Pathways connect the disjoint gene lists

- Can't rely on pathway databases
- High-quality, low coverage

- Instead learn condition-specific pathways computationally
- Combine data with generic physical interaction networks

Physical interactions

Protein-protein interactions (PPI)

- Metabolic
- Protein-DNA (transcription factor-gene)

 Genes and proteins are different node types

Hairball networks

Networks are highly connected

 Can't use naïve strategy to connect screen hits and differentially expressed

genes

Identify connections within an interaction network

Network problems

- Network inference
 - Infer network structure
- Motif finding
 - Identify common subgraph topologies
- Pathway or module detection
 - Identify subgraphs of genes that perform the same function or active in same condition
- Network comparison, alignment, querying
- Conserved modules
 - Identify modules that are shared in networks of multiple species/conditions

Network motifs

- Problem: Find subgraph topologies that are statistically more frequent than expected
- Brute force approach
 - Count all topologies of subgraphs of size m
 - Randomize graph (retain degree distribution) and count again
 - Output topologies that are over/under represented

Gene regulatory network motifs

Network modules

- Modules: dense (highly-connected) subgraphs (e.g., large cliques or partially incomplete cliques)
- Problem: Identify the component modules of a network
- Difficulty: definition of module is not precise
 - Hierarchical networks have modules at multiple scales
 - At what scale to define modules?

How to define a computational "pathway"

Given:

- Partially directed network of known physical interactions (e.g. PPI, kinase-substrate, TFgene)
- Scores on source nodes
- Scores on target nodes

• Do:

 Return directed paths in the network connecting sources to targets

Network flow problem

- Finding an optimal route by minimizing transportation costs from LA to NYC
 - $-c_{i,j}$, the cost between City *i* and City *j*
 - $-f_{i,j}$ = 1 if in route, = 0 if not
 - $-\operatorname{argmin}_{f}\sum_{i,j}c_{i,j}*f_{i,j}$ s.t. constraints

ResponseNet optimization goals

- Connect screen hits and differentially expressed genes
- Recover sparse connections
- Identify intermediate proteins missed by the screens
- Prefer high-confidence interactions

 Minimum cost flow formulation can meet these objectives

Construct the interaction network

Transform to a flow problem

Max flow on graphs

Weighting interactions

Probability-like confidence of the interaction

Proteins

•	MP2K1_HUMAN Homo sapiens		Temporarily not available for viewing in Netility.		
•	MK01_HUMAN Homo sapiens		Temporarily not available for viewing in Netility.		

Evidence

Source DB 🛊	Source ID 🛊	Interaction Type \$	PSI MI Code 🕏	PubMed ID \$	Detection Type ♦	PSI MI Code \$
biogrid	857930	direct interaction	MI:0407	12788955	enzymatic study	MI:0415
ophid	17231	aggregation	MI:0191	11352917	confirmational text mining	MI:0024
ophid	17231	aggregation	MI:0191	15657099	deglycosylase assay	MI:1006
ophid	17234	aggregation	MI:0191	11352917	confirmational text mining	MI:0024
ophid	17234	aggregation	MI:0191	15657099	deglycosylase assay	MI:1006
biogrid	259225	direct interaction	MI:0407	12697810	t7 phage display	MI:0108
intact	EBI-8279991 ₺	phosphorylation reaction	MI:0217	23241949	biosensor	MI:0968

<u>iRefWeb</u>

- Example evidence: edge score of 1.0
- 16 distinct publications supporting the edge ²³

Weights and capacities on edges

Find the minimum cost flow

Cost is greater for low-weight edges

Parameter controlling the amount of flow from the source

$$\min_{f} \left(\sum_{i \in V', j \in V'} -\log(w_{ij}) * f_{ij} \right) - \left(\gamma * \sum_{i \in Gen} f_{Si} \right) \right)$$

Subject to:

$$\sum_{j \in V'} f_{ij} - \sum_{j \in V'} f_{ji} = 0 \quad \forall i \in V' - \{S, T\}$$

Flow coming in to a node equals flow leaving the node

$$\min_{f} \left(\sum_{i \in V', j \in V'} -\log(w_{ij}) * f_{ij} \right) - \left(\gamma * \sum_{i \in Gen} f_{Si} \right) \right)$$

Subject to:

$$\sum_{j \in V'} f_{ij} - \sum_{j \in V'} f_{ji} = 0 \quad \forall i \in V' - \{S, T\}$$

$$\sum_{i \in Gen} f_{Si} - \sum_{i \in Tra} f_{iT} = 0$$

Flow leaving the source equals flow entering the target

$$\min_{f} \left(\sum_{i \in V', j \in V'} -\log(w_{ij}) * f_{ij} \right) - \left(\gamma * \sum_{i \in Gen} f_{Si} \right) \right)$$

Subject to:

$$\sum_{j \in V'} f_{ij} - \sum_{j \in V'} f_{ji} = 0 \quad \forall i \in V' - \{S, T\}$$

$$\sum_{i \in Gen} f_{Si} - \sum_{i \in Tra} f_{iT} = 0$$

Flow is nonnegative and does not exceed edge capacity

$$0 \leq f_{ij} \leq c_{ij} \quad \forall (i,j) \in E'$$

$$\min_{f}\left(\left(\sum_{i\in V',j\in V'}-\log(w_{ij})*f_{ij}\right)-\left(\gamma*\sum_{i\in Gen}f_{Si}\right)\right)$$

Subject to:

$$\sum_{j \in V'} f_{ij} - \sum_{j \in V'} f_{ji} = 0 \quad \forall i \in V' - \{S, T\}$$

$$\sum_{i \in Gen} f_{Si} - \sum_{i \in Tra} f_{iT} = 0$$

$$0 \leq f_{ij} \leq c_{ij} \quad \forall (i,j) \in E'$$

Linear programming

- Optimization problem is a linear program
- Canonical form

```
maximize \mathbf{c}^{\mathrm{T}}\mathbf{x}
subject to A\mathbf{x} \leq \mathbf{b}
and \mathbf{x} \geq \mathbf{0} Wikipedia
```

- Polynomial time complexity
- Many off-the-shelf solvers
- Practical Optimization: A Gentle Introduction
 - Introduction to linear programming
 - Simplex method
 - Network flow

ResponseNet pathways

- Identifies pathway members that are neither hits nor differentially expressed
- Ste5 recovered when STE5 deletion is the perturbation

ResponseNet summary

Advantages

- Computationally efficient
- Integrates multiple types of data
- Incorporates interaction confidence
- Identifies biologically plausible networks

Disadvantages

- Direction of flow is not biologically meaningful
- Path length not considered
- Requires sources and targets
- Dependent on completeness and quality of input network

 Unlike PIQ, we don't have a complete gold standard available for evaluation

 Can simulate "gold standard" pathways from a network

 Compare relative performance of multiple methods on independent data

 PR curves can evaluate node or edge recovery but not the global pathway structure

Evaluation beyond pathway databases

 Natural language processing can also help semi-automated evaluation

Literome

PMID: 14611643 that PKB mediates the ... of WNK1 at ... (details) WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a novel PKB (protein kinase B)/Akt substrate.

Chilibot

- Our studies reveal a novel mechanism in which phosphorylation of STAT3 is mediated by a
 constitutively active JNK2 [MAPK9] isoform, JNK2 [MAPK9] α. Ref: Oncogene, 2011, PMID: 20871632
 - iHOP

Akt1 🍲, but not Akt2, phosphorylates palladin 🍲 at Ser507 in a domain that is critical for F-actin bundling. [2010]

Classes of pathway prediction algorithms

Classes of pathway prediction algorithms

Alternative pathway identification algorithms

- k-shortest paths
 - Ruths2007
 - Shih2012
- Random walks / network diffusion / circuits
 - Tu2006
 - eQTL electrical diagrams (<u>eQED</u>)
 - HotNet
- Integer programs
 - Signaling-regulatory Pathway INferencE (SPINE)
 - Chasman2014

Alternative pathway identification algorithms

- Path-based objectives
 - Physical Network Models (PNM)
 - Maximum Edge Orientation (MEO)
 - Signaling and Dynamic Regulatory Events Miner (SDREM)
- Steiner tree
 - Prize-collecting Steiner forest (<u>PCSF</u>)
 - Belief propagation approximation (<u>msgsteiner</u>)
 - Omics Integrator implementation
- Hybrid approaches
 - PathLinker: random walk + shortest paths
 - ANAT: shortest paths + Steiner tree

Recent developments in pathway discovery

- Multi-task learning: jointly model several related biological conditions
 - ResponseNet extension: <u>SAMNet</u>
 - Steiner forest extension: <u>Multi-PCSF</u>
 - SDREM extension: MT-SDREM
- Temporal data
 - ResponseNet extension: <u>TimeXNet</u>
 - Steiner forest extension and ST-Steiner
 - Temporal Pathway Synthesizer

Condition-specific genes/proteins used as input

- Genetic screen hits (as causes or effects)
- Differentially expressed genes
- Transcription factors inferred from gene expression
- Proteomic changes (protein abundance or posttranslational modifications)
- Kinases inferred from phosphorylation
- Genetic variants or DNA mutations
- Enzymes regulating metabolites
- Receptors or sensory proteins
- Protein interaction partners
- Pathway databases or other prior knowledge