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Modeling RNA with
Stochastic Context Free Grammars

« Consider tRNA genes

— 274 in yeast genome, ~1500 in human genome
— get transcribed, like protein-coding genes

— don'’t get translated, therefore base statistics much
different than protein-coding genes

— but secondary structure is conserved

* To recognize new tRNA genes, model known ones

using stochastic context free grammars [Eddy &
Durbin, 1994; Sakakibara et al. 1994]

« But what is a grammar?



Transformational Grammars

A transformational grammar characterizes a set of
legal strings

* The grammar consists of
— a set of abstract nonterminal symbols

{Sa Cis Cys Gy, 04}

— a set of terminal symbols (those that actually
appear in strings)

(A, C, G, U}

— a set of productions
s—>¢ ¢ —>Ue, ¢,>Ac; ¢;>A ¢, >A

c, >Ge, ¢ G



Grammar Rules Examples

N L I exa I I l p I e S — NPVP I + want a morning flight

NP — Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight
Nominal — Nominal Noun  morning + flight

° Te rm i n a I S | Noun flights

VP — Verb do
| Verb NP want + a flight
- WO rd S | Verb NP PP leave + Boston + in the morning
|  Verb PP leaving + on Thursday

® Nonte rminals PP — Preposition NP from + Los Angeles
— noun phrases, verb phrases and sentences

e Rules

— Equations that consist of a single non-
terminal on the left and any number of
terminals and nonterminals on the right.

https://web.stanford.edu/~jurafsky/



https://web.stanford.edu/~jurafsky/

A Grammar for Stop Codons

s—>¢ ¢ —>Uec, ¢,>Ac; ¢;>A ¢, —>A

c, >Ge, ¢—G

* This grammar can generate the 3 stop codons:
UAA, UAG, UGA

* With a grammar we can ask questions like
— what strings are derivable from the grammar?

— can a particular string be derived from the
grammar?

— what sequence of productions can be used to
derive a particular string from a given grammar?



The Derivation for UAG

s—>¢ ¢ —>Uec, ¢,>Ac; ¢;>A ¢, —>A

c, >Ge, ¢—G

s = ¢, = Uc, = UAc, = UAG



The Parse Tree for UAG

s—>¢ ¢ —>Uec, ¢,>Ac; ¢;>A ¢, —>A

........... S ............... C2 % GC4 C3 % G

e ssEEssEEEssEEEssEEsssEEEsssEEsssEEEsdenEsssEEasREEEEsRERnRRERnnnnnnrannnnnnnnd



Some Shorthand

¢, = Ac,
— C, — AC3 ‘GC4
¢, = Qc,



The Chomsky Hierarchy

unrestricted
context-sensitive
Context-fb

* A hierarchy of grammars defined by restrictions on
productions
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The Chomsky Hierarchy

Regular grammars u—> Xy u—>X
Context-free grammars u—f
Context-sensitive grammars aua, > a,pa,

Unrestricted grammars  Q,uc, — Q;

u,v
X
d,,0,,0,

p

are nonterminals
IS a terminal
are any sequence of terminals/nonterminals

iIs any non-null sequence of terminals/nonterminals
11



CFGs and RNA

« Context free grammars are well suited to modeling
RNA secondary structure because they can
represent base pairing preferences

« A grammar for a 3-base stem with a loop of either
GAAA or GCAA

s > AwU | Cw,G | Gw,C | Uw,A
w, = Aw,U | Cw,G | Gw,C | Uw,A
w, > Aw,U | Cw,G | Gw,C | Uw,A
w, > GAAA | GCAA
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CFGs and RNA

a. Productions b. Derivation
= { S0 — 57, 52 — G Sz, S0 = 51 = C5,6 = CAS3UG = CAS,5,UG
51 = C5 6 Sz —G, = CAUSEASGUG = CAUCSgGAS,UG
51 —AS U S =0, = CAUCAS7GASoUG = CAUCAGSRGAS,UG
5o = AS3U, Sy — 4 5,0, = CAUCAGGGA SoUG = CAUCAGGGAAS;,UUG
53 — 54 S9, S10—=C 510G, = CAUCAGGGAAGSy1CUUG
54 = US54,  S10—G 511 C, = CAUCAGGGAAGAS:,UCUUG
55 = C5H G  Sy1—4 55,0, = CAUCAGGGAAGAU S,3UCUUG
S¢ — A S7, 12 = U Sis, = CAUCAGGGAAGAUCUCUUG.
S — U S7, S13 = C }
c¢. Parse tree ) d. Secondary Structure
0
|
|51 N 5|0 (
Sa2 I .
I cl:// I«|\?
=)
Al/ |2\u
27 53 s
AN
54 Sg— Y
; IC{*—. / \o- - / N g
: 2 Ss 4 S10——°C
A 4 / ,.'. ” \ / 10\ -
/ 513 ;A“"S c,' % 5, —U
CAUCAGGGAAGAUCUCUUG [] |6 \ \\/”\ ‘
/s?._b58 b Ay 512~ 505 1
G \ 7 \'."( P
b - — -'G' Lk [

Figure from: Sakakibara et al. Nucleic Acids Research, 1994
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Ambiguity in Parsing

"I shot an elephant in my pajamas. How he got in my
pajamas, |

J

Il never know.” — Groucho Marx

Pro V Det Noun P Poss Noun Pro V Det Noun P Poss Noun

[ shotan elephant in my pajamas [ shot an elephant in myv pajamas

14



An Ambiguous RNA Grammar

¢—>GsC * With this grammar, there are 3 parses
for the string GGGAACC

s—>Gs
s—>AA
) ) )
— 1 — T — ¥
G ) G ) C G )
— ¥ — ¢ — ¥
G ) C G ) G )
G ) C G ) C G )
7\ N RN
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A Probabillistic Version
of the Stop Codon Grammar

1.0 1.0 0.7 0.2 1.0
s—>¢ ¢ —>Ue, ¢,>Ac; ¢;>A ¢, >A
0.3 0.8

c, >Gc, ¢,—>G

« Each production has an associated probability

* Probabilities for productions with the same left-hand side
sum to 1

* This regular grammar has a corresponding Markov
chain model

16



Stochastic Context Free Grammars

(a.k.a. Probabilistic Context Free Grammars)

0.25 0.25 0.25 0.25
s > AwU | Cw,G | Gw,C | Uw,A

0.1 0.4 0.4 0.1
w, = Aw,U | Cw,G | Gw,C | Uw,A

0.25 0.25 0.25 0.25
w, > Aw,U | Cw,G | Gw,C | Uw,A

0.8 0.2
w, > GAAA | GCAA

17



Stochastic Grammars?

...the notion “probability of a sentence” is an entirely
useless one, under any known interpretation of this
term.

— Noam Chomsky
(famed linguist)

Every time I fire a linguist, the performance of the
recognizer improves.

— Fred Jelinek
(former head of IBM speech recognition group)

Credit for pairing these quotes goes to Dan Jurafsky and James Martin,
Speech and Language Processing
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Three Key Questions

* How likely is a given sequence?
the Inside algorithm

« What is the most probable parse for a given
sequence?

the Cocke-Younger-Kasami (CYK) algorithm

* How can we learn the SCFG parameters given a
grammar and a set of sequences?

the Inside-Outside algorithm

19



Chomsky Normal Form

* [tis convenient to assume that our grammar is in Chomsky
Normal Form; i.e. all productions are of the form:

V—>VZ right hand side consists of two nonterminals

v — A right hand side consists of a single terminal

* Any CFG can be put into Chomsky Normal Form

20



Converting a Grammar to CNF

s—>GsC s —>bg p
s—>Gs )  p>sh.
s—>AA s b, s
s—>b,b,
b, > G
b, —>C

21



Parameter Notation

* For productions of the form Vv — Vz | we’ll denote
the associated probability parameters

t (y,z)  transition

» For productions of the form Vv —> A , we’ll denote
the associated probability parameters

e, (A) emission
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Determining the Likelihood of a
Sequence: The Inside Algorithm

« Dynamic programming method, analogous to the
Forward algorithm

 Involves filling in a 3D matrix

a(i, j,v)

representing the probability of all parse subtrees rooted
at nonterminal v for the subsequence from i to j

23



Determining the Likelihood of a
Sequence: The Inside Algorithm

vV —> VZ
O—O0 0O OO0 O
1 L

» (i, j,v) :the probability of all parse subtrees
rooted at nonterminal v for the subsequence from i to

24



Inside Calculation Example

s—>b.p

P a(2,6,8) =t,(bg, p) a(2,2,b,) a(3,6, p) +

s—>b:s

s—>b, Db, ts(bGas) a(zazab(;)a(396as)

b, > G
)
)
P
5«”\\\&
N

b > C g

b, > A4
b bg by by bc
v v v v v
G G A A C

C G




Determining the Likelihood of a
Sequence: The Inside Algorithm

O0—0—0 O—0 0

1 i k k+1 j L
M M il

a(i, j,v) = ZZ t (v,2) a(i,k,y) a(k+1, j,z)
y=1 z=1 k=i

M is the number of nonterminals in the grammar
26



The Inside Algorithm

* Initialization (fori=1to L,v=1 to M)

a(i,i,v)= ev(xi)

. Iteration(fori—L]to]j—i+1toL v=1to M)
M j-1

a(i, j,v) = ZZZJ (v,2)ali,k,v)a(k+1,],z)

y=I1 z=1 k=i

e Termination

Pr(x)=a(l,L,1)

oS

start nonterminal



Learning SCFG Parameters

If we know the parse tree for each training sequence, learning the
SCFG parameters is simple

— no hidden part of the problem during training
— count how often each parameter (i.e. production) is used
— normalize/smooth to get probabilities

More commonly, there are many possible parse trees per
sequence — we don’t know which one is correct

— thus, use an EM approach (Inside-Outside)

— iteratively
« determine expected # times each production is used

— consider all parses
— weight each by its probability
« set parameters to maximize likelihood given these counts

28



The Inside-Outside Algorithm

* We can learn the parameters of an SCFG from

training sequences using an EM approach called
Inside-Outside

* In the E-step, we determine

— the expected number of times each nonterminal is
used in parses c(V)

— the expected number of times each production is
used in parses c(v— yz)

c(v—> A)

* In the M-step, we update our production probabilities

29



The Outside Algorithm
S

Q<
N

1 i j L

- [(i, j,Vv): the probability of parse trees rooted at the
start nonterminal, excluding the probability of all
subtrees rooted at nonterminal v covering the

subsequence from i to j

30



s—>b:.p
p—>sb,
s—>b.s
s—>b,b,
b, > G
b, —>C
b, —> A

Outside Calculation Example

ﬂ(za 69 S) — fp(S,bC)CZ(7, 79bC)IB(29 79 p)
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The Outside Algorithm

 We can recursively calculate £(i, j,v) from [
values we've calculated for y

 The first case we consider is where v is used in
productions of the form: y — Zv

/N

k i1 0P L
M i—1
y:

1
ZZ_;Z_;@ (z,v)a(k,i—1,z) Bk, j, V)



The Outside Algorithm

 The second case we consider is where v is used In
productions of the form: Yy —>Vvz

1 i j j+1 k L

N Nt (vz)a(j+1k,2) Bk, )

M
y=1 z=1 k=j+1
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The Outside Algorithm

e |nitialization

L(,L,1)=1  (the start nonterminal)
LA, Lv)=0 forv=2toM

 lteration (fori=1toL,j=Ltoi,v=1toM)

ﬁ(i,j,V)=ZZ () alki—1,z) Bk, j, )+
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The Inside-Outside Algorithm

* We can learn the parameters of an SCFG from

training sequences using an EM approach called
Inside-Outside

* In the E-step, we determine

— the expected number of times each nonterminal is
used in parses c(V)

— the expected number of times each production is
used in parses c(v— yz)

c(v—> A)

* In the M-step, we update our production probabilities
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The Inside-Outside Algorithm

 The EM re-estimation equations (for 1 sequence) are:

«— cases where v used

Zﬁ(iaia v)e,(A) to generate A

A c(v—> A4 i|x;=A4
e, (A4)= ( ) — L L

() S B, jov)ad, j,v)

i=1 j=i ’\
cases where v used
A _c(v—> yz) to generate any subsequence
{ (ya Z) T
c(v)
L—l L j-1
D D t,(0,2) Bl jov) alik,y) a(k+1, /,2)
i=1 j=i+l k=i

2.2 B, j.v) e, j,v)

i=l j=i
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Finding the Most Likely Parse:
The CYK Algorithm

 Involves filling in a 3D matrix

y(,j,v)

representing the most probable parse subtree rooted at
nonterminal v for the subsequence from i to j

 and a matrix for the traceback

(i, j, V)

storing information about the production at the top of this
parse subtree

37



The CYK Algorithm

* Initialization (fori=1to L,v=1 to M)
y(i,i,v) =loge, (x;)
r(i,i,v) = (0,0,0)

e lteration(fori=1toL-1,j=i+1toL,v=1to M)

y(i, j,v)=max . {y(,k,y)+y(k+1,j,z)+logt,(v,2)}

k=i...j—1
r(i,j,v)=argmax . {y(i.k,y)+y(k+1,j,2)+logt, (y.2)]
k=i...j-1
 Termination
log P(x,7|0)=y(,L,1)

start nonterminal
38



The CYK Algorithm Traceback

* Initialization:
push (/, L, 1) on the stack

* |teration:
pop (i, j, v) // pop subsequence/nonterminal pair
(v, 2, k) =1(i, j, v) /| get best production identified by CYK
if (y, z, k) ==(0,0,0) //indicating a leaf
attach x; as the child of v
else
attach y, z to parse tree as children of v
push(i, k, y)
push(k+1, j, z)

39



Comparison of SCFG Algorithms
to HMM Algorithms

HMM algorithm

SCFG algorithm

optimal alignment Viterbi CYK
probability of forward inside
sequence

EM parameter forward-backward inside-outside
estimation

memory complexity O(LM) O(LzM)
time complexity O(LMz) O(L3M3)
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