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Overview

• RNA-Seq technology
• The RNA-Seq quantification problem
• Generative probabilistic models and 

Expectation-Maximization for the 
quantification task

• Inference of alternative splicing from RNA-
Seq data with probabilistic splice graphs
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Goals for lecture

• What is RNA-Seq?
• How is RNA-Seq used to measure the 

abundances of RNAs within cells?
• What probabilistic models and algorithms are 

used for analyzing RNA-Seq?
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Measuring transcription the 
old way: microarrays

• Each spot has “probes” for a 
certain gene

• Probe: a DNA sequence 
complementary to a certain 
gene

• Relies on complementary 
hybridization

• Intensity/color of light from 
each spot is measurement of 
the number of transcripts for a 
certain gene in a sample

• Requires knowledge of gene 
sequences
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Advantages of RNA-Seq over 
microarrays

• No reference sequence needed
– With microarrays, limited to the probes on 

the chip
• Low background noise
• Large dynamic range

– 105 compared to 102 for microarrays
• High technical reproducibility
• Identify novel transcripts and splicing events
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RNA-Seq technology
• Leverages rapidly advancing sequencing 

technology
• Transcriptome analog to whole genome shotgun 

sequencing
• Two key differences from genome sequencing:

1. Transcripts sequenced at different levels of 
coverage - expression levels

2. Sequences already known (in many cases) -
coverage is measurement
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A generic RNA-Seq protocol
Sample 
RNA

sequencing 
machine

reads
CCTTCNCACTTCGTTTCCCAC
TTTTTNCAGAGTTTTTTCTTG
GAACANTCCAACGCTTGGTGA
GGAAANAAGACCCTGTTGAGC
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCGTTGCGTT
CCCGCGCGCTTAGGCTACTCG
TCACACATCTCTAGCTAGCAT
CATGCTAGCTATGCCTATCTA

cDNA 
fragments

reverse 
transcription + 
amplification

RNA 
fragments

fragmentation
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RNA-Seq data: FASTQ format
@HWUSI-EAS1789_0001:3:2:1708:1305#0/1
CCTTCNCACTTCGTTTCCCACTTAGCGATAATTTG
+HWUSI-EAS1789_0001:3:2:1708:1305#0/1
VVULVBVYVYZZXZZ\ee[a^b`[a\a[\\a^^^\
@HWUSI-EAS1789_0001:3:2:2062:1304#0/1
TTTTTNCAGAGTTTTTTCTTGAACTGGAAATTTTT
+HWUSI-EAS1789_0001:3:2:2062:1304#0/1
a__[\Bbbb`edeeefd`cc`b]bffff`ffffff
@HWUSI-EAS1789_0001:3:2:3194:1303#0/1
GAACANTCCAACGCTTGGTGAATTCTGCTTCACAA
+HWUSI-EAS1789_0001:3:2:3194:1303#0/1
ZZ[[VBZZY][TWQQZ\ZS\[ZZXV__\OX`a[ZZ
@HWUSI-EAS1789_0001:3:2:3716:1304#0/1
GGAAANAAGACCCTGTTGAGCTTGACTCTAGTCTG
+HWUSI-EAS1789_0001:3:2:3716:1304#0/1
aaXWYBZVTXZX_]Xdccdfbb_\`a\aY_^]LZ^
@HWUSI-EAS1789_0001:3:2:5000:1304#0/1
CCCGGNGATCCGCTGGGACAAGCAGCATATTGATA
+HWUSI-EAS1789_0001:3:2:5000:1304#0/1
aaaaaBeeeeffffehhhhhhggdhhhhahhhadh

name
sequence
qualities

read

1 Illumina HiSeq 2500 lane

~150 million reads

read1

read2

paired-end reads
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Tasks with RNA-Seq data
• Assembly: 

– Given: RNA-Seq reads (and possibly a genome sequence)

– Do: Reconstruct full-length transcript sequences from the reads

• Quantification (our focus): 

– Given: RNA-Seq reads and transcript sequences

– Do: Estimate the relative abundances of transcripts (“gene expression”)

• Differential expression or additional downstream analyses:

– Given: RNA-Seq reads from two different samples and transcript sequences

– Do: Predict which transcripts have different abundances between two 
samples 9



RNA-Seq is a relative abundance 
measurement technology

• RNA-Seq gives you reads 
from the ends of a random 
sample of fragments in 
your library

• Without additional data this 
only gives information 
about relative abundances

• Additional information, such 
as levels of “spike-in”
transcripts, are needed for 
absolute measurements

RNA
sample

cDNA
fragments

reads
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Issues with relative abundance 
measures

Gene
Sample 1 
absolute 

abundance

Sample 1 
relative 

abundance

Sample 2 
absolute 

abundance

Sample 2 
relative 

abundance

1 20 10% 20 5%

2 20 10% 20 5%

3 20 10% 20 5%

4 20 10% 20 5%

5 20 10% 20 5%

6 100 50% 300 75%

• Changes in absolute expression of high expressors is a major factor

• Normalization is required for comparing samples in these situations
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The basics of quantification 
with RNA-Seq data

• For simplicity, suppose reads are of length one
(typically they are > 35 bases)

• What relative abundances would you estimate for 
these genes?

• Relative abundance is relative transcript levels in the 
cell, not proportion of observed reads

transcripts

1

2

3

200

60

80

reads

100 A
60 C
40 G
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Length dependence
• Probability of a read coming from a transcript ∝

relative abundance × length
transcripts reads

100 A
60 C
40 G

1

2

3

200

60

80

transcript 1 relative 
abundance

probability of read from transcript 1 
= (transcript 1 reads) / (total reads)

transcript 1 length 13



Length dependence
• Probability of a read coming from a transcript ∝

relative abundance × length
transcripts reads

100 A
60 C
40 G

1

2

3

200

60

80

normalize
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The basics of quantification 
from RNA-Seq data

• Basic assumption: 

• Normalization factor is the mean length of 
expressed transcripts

expression level
(relative abundance)

length
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The basics of quantification 
from RNA-Seq data

• Estimate the probability of reads being generated 
from a given transcript by counting the number of 
reads that align to that transcript

• Convert to expression levels by normalizing by 
transcript length

# reads mapping to transcript i
total # of mappable reads
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The basics of quantification 
from RNA-Seq data

• Basic quantification algorithm
– Align reads against a set of reference 

transcript sequences
– Count the number of reads aligning to each 

transcript
– Convert read counts into relative expression 

levels

17



Counts to expression levels
• RPKM - Reads Per Kilobase per Million mapped 

reads

• FPKM (fragments instead of reads, two reads per 
fragment, for paired end reads)

• TPM - Transcripts Per Million

• Prefer TPM to RPKM because of normalization 
factor
– TPM is a technology-independent measure (simply a 

fraction)

(estimate of)
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What if reads do not uniquely 
map to transcripts?

• The approach described assumes that every 
read can be uniquely aligned to a single 
transcript

• This is generally not the case
– Some genes have similar sequences - gene 

families, repetitive sequences
– Alternative splice forms of a gene share a 

significant fraction of sequence
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Central 
dogma of 
molecular 

biology

Griffith et al. PLoS Computational Biology 2015
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Alternative splicing
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Multi-mapping reads in 
RNA-Seq

Species Read length % multi-mapping reads

Mouse 25 17%

Mouse 75 10%

Maize 25 52%

Axolotl 76 23%

Human 50 23%

• Throwing away multi-mapping reads leads to

– Loss of information

– Potentially biased estimates of abundance 22



Distributions of alignment counts
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What if reads do not uniquely 
map to transcripts?

• Multiread: a read that could have been derived from 
multiple transcripts

• How would you estimate the relative abundances for 
these transcripts?

transcripts

1

2

3

20 + 180 = 200

20 + 40 = 60

80

reads

90 A
40 C
40 G
30 T
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Some options for 
handling multireads

• Discard multireads, estimate based on uniquely mapping reads only

• Discard multireads, but use “unique length” of each transcript in 
calculations

• “Rescue” multireads by allocating (fractions of) them to the transcripts

– Three step algorithm

1. Estimate abundances based on uniquely mapping reads only

2. For each multiread, divide it between the transcripts to which it maps,  
proportionally to their abundances estimated in the first step

3. Recompute abundances based on updated counts for each transcript 25



Rescue method example - Step 1
transcripts reads

90 A
40 C
40 G
30 T

Step 1

1

2

3

200

60

80
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Rescue method example - Step 2
transcripts reads

90 A
40 C
40 G
30 T

Step 2

1

2

3

200

60

80
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Rescue method example - Step 3
transcripts reads

90 A
40 C
40 G
30 T

Step 3

1

2

3

200

60

80
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An observation about the 
rescue method

• Note that at the end of the rescue algorithm, we 
have an updated set of abundance estimates

• These new estimates could be used to 
reallocate the multireads

• And then we could update our abundance 
estimates once again

• And repeat!
• This is the intuition behind the statistical 

approach to this problem
29



RSEM (RNA-Seq by Expectation-Maximization) -
a generative probabilistic model
• Simplified view of the model (plate notation)

• Grey – observed variable
• White – latent (unobserved) variables

transcript probabilities 
(expression levels)

number of reads start position

transcript

orientation

read sequence

Bayesian network
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RSEM - a generative probabilistic model

fragment length

read length

quality scores

paired read

transcript probabilities (expression levels)

number of reads

transcript

start position

orientation

read sequence
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• Observed data likelihood

• Likelihood function is concave with 
respect to θ

– Has a global maximum (or global maxima)
• Expectation-Maximization for 

optimization

Quantification as maximum 
likelihood inference

“RNA-Seq gene expression estimation with read mapping uncertainty”
Li, B., Ruotti, V., Stewart, R., Thomson, J., Dewey, C.
Bioinformatics, 2010
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• Full likelihood computation requires 
O(NML2) time

– N (number of reads) ~ 107

– M (number of transcripts) ~ 104

– L (average transcript length) ~ 103

• Approximate by alignment

Approximate inference with 
read alignments

all local alignments of read n with at most x mismatches
33



EM Algorithm
• Expectation-Maximization for RNA-Seq

– E-step: Compute expected read counts given 
current expression levels

– M-step: Compute expression values maximizing 
likelihood given expected read counts

• Rescue algorithm ≈ 1 iteration of EM

34



Expected read count 
visualization
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Improved accuracy over 
unique and rescue

true expression level
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Mouse gene-level expression estimation 38



Improving accuracy on 
repetitive genomes: maize

pr
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true expression level

Maize gene-level expression estimation 39



RNA-Seq and RSEM summary
• RNA-Seq is the preferred technology for 

transcriptome analysis in most settings
• The major challenge in analyzing RNA-Seq data: 

the reads are much shorter than the transcripts 
from which they are derived

• Tasks with RNA-Seq data thus require handling 
hidden information: which gene/isoform gave rise 
to a given read

• The Expectation-Maximization algorithm is 
extremely powerful in these situations
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Recent developments in RNA-Seq
• Long read sequences: PacBio and Oxford Nanopore

• Single-cell RNA-Seq: review
– Observe heterogeneity of cell populations
– Model technical artifacts (e.g. artificial 0 counts)
– Detect sub-populations
– Predict pseudotime through dynamic processes
– Detect gene-gene and cell-cell relationships

• Alignment-free quantification:
– Kallisto
– Salmon
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Public sources of RNA-Seq data
• Gene Expression Omnibus (GEO): 

http://www.ncbi.nlm.nih.gov/geo/
– Both microarray and sequencing data

• Sequence Read Archive (SRA): 
http://www.ncbi.nlm.nih.gov/sra
– All sequencing data (not necessarily RNA-Seq)

• ArrayExpress: 
https://www.ebi.ac.uk/arrayexpress/
– European version of GEO

• Homogenized data: MetaSRA, Toil, recount2, 
ARCHS4
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Inference of alternative 
splicing from RNA-Seq data

• Part I - Alternative splicing and the 
challenges it poses

• Part II - A solution: Probabilistic Splice 
Graphs (PSGs)

• Part III - Evaluating PSG methodology
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Alternative splicing
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Classes of alternative 
splicing events
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Complication 1: De novo 
transcriptome assembly

• RNA-Seq reads/fragments 
are relatively short

• Often insufficient to 
reconstruct full-length 
isoforms in the presence 
of alternative splicing 

• Transcriptome assemblies 
perhaps best left in 
“graph” form
–De Bruijn graph
–String graphs

Graph constructed 
by the “Butterfly” 
module of Trinity
(Grabherr et al. 
2011)
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Complication 2: Non-identifiability 
of full-length isoform models

LeGault et al. 2013 48

two (of infinitely 
many) possible 
isoform 
abundances



Complication 3: Combinatorial 
explosion of distinct isoforms

• Combinatorial explosion of the number of possible 
isoforms for each gene

• Insufficient data to accurately estimate abundances of 
thousands of isoforms

Drosophila Dscam: more than 38,000 possible isoforms
(Schmucker et al., 2000)
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• Part I - Alternative splicing and the 
challenges it poses

• Part II - A solution: Probabilistic Splice 
Graphs (PSGs)

• Part III - Evaluating PSG methodology

Inference of alternative 
splicing from RNA-Seq data
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Splice Graphs
• Heber et al. 2002
• Compact data structure for representing the 

possible isoforms of a gene
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Splice Graphs with EST and 
RNA-Seq data

• Xing et al. 2006
–EM algorithm for estimating abundances of all 

possible isoforms given splice graph and EST data
–Expressed Sequence Tag (EST), 74.2 million in 2013

• Montgomery et al. 2010, Singh et al. 2011
–Graph flow-based methods for 

quantification/differential splicing given RNA-Seq data

• Rogers et al. 2012
–SpliceGrapher: construct splice graph structure given 

RNA-Seq data
52



Probabilistic Splice Graphs
• Jenkins et al. 2006
• Compact probabilistic model representing 

isoform frequencies in terms of frequencies of 
individual splice events

• Originally used by Jenkins et al. for EST analysis

0.2

0.8

0.6
0.4

0.32
0.48
0.08
0.12
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Probabilistic Splice Graph 
Complexity

known 
isoforms

“line graph”

“exon graph”

“unfactorized 
graph”

“higher-order 
exon graph”
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Advantages of PSGs
• Compact description of the possible isoforms of a 

gene
– Models the frequencies of potentially exponentially 

many isoforms with a polynomial number of 
parameters

– Models dependence or independence of splice 
events

• The parameters of a PSG are more often identifiable
than a model that has a parameter for every possible 
isoform

• Splice graphs are naturally-produced structures from 
transcriptome assemblers
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PSGs are alternative 
“parsimonious” models

• Other methods find smallest set of isoform structures that explain the data

– Cufflinks (Trapnell et al., 2010)

– IsoLasso (Li et al., 2011)

– NSMAP (Xia et al., 2011)

– SLIDE (Li et al., 2011)

• PSG models are another form of parsimonious model

– Minimize the number of splice event parameters

– Assumption of independence between splice events 56



Application of PSGs to 
RNA-Seq data

• L. Legault and C. Dewey. Inference of alternative 
splicing from RNA-Seq data with probabilistic 
splice graphs. Bioinformatics 29(18):2300-2310.
–Combined model of PSG with RNA-Seq 

generative model
–Efficient PSG parameter estimation with EM and 

dynamic programming
–Identifiability proofs for PSG with RNA-Seq data
–Differential processing (splicing) tests
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The PSG parameter 
inference task

• Given: RNA-Seq reads and a PSG structure

• Do: Estimate the (ML or MAP) parameters 
for the model

CCTTCNCACTTCGTTTCCCAC
TTTTTNCAGAGTTTTTTCTTG
GAACANTCCAACGCTTGGTGA
GGAAANAAGACCCTGTTGAGC
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCGTTGCGTT

?

?

?

?
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PSG notations

• A directed acyclic graph (DAC)
• Vertex vi is a sequence with length li
• Edge (vi, vj) with weight 0<= αi,j <=1
• An isoform is a path s with weight 

59
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A model of RNA-Seq from PSGs
• RSEM model extended to probabilistic splice graphs

– fragment length distribution, quality scores, read mapping 
ambiguity

• Dynamic programming algorithms → polynomial time 
inference for genes with an exponential number of 
isoforms

Probability of including 
vertex j given that vertex 
i was in transcript
Expected prefix length
from v0 to vi
Expected suffix length
from vi to vM
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EM for PSG parameter estimation
• E-step: compute the expectation of the number of times 

edge (i,j) is used

• M-step: maximize the completely-observed likelihood 
given the edge counts
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Identifiability of PSGs with 
RNA-Seq data

• Identifiability: 
• Proposition: If for all edges (u, v), there exists a read that is 

uniquely derived from that edge, or v has indegree 1 and there 
exists a read that is uniquely derived from v, then the PSG is 
identifiable.

identifiable

not identifiable
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The differential processing (DP) task
• Given: RNA-Seq reads from two conditions and a PSG 

structure

• Do: Determine if the processing frequencies are different

CCTTCNCACTTCGTTTCCCAC
TTTTTNCAGAGTTTTTTCTTG
GAACANTCCAACGCTTGGTGA
GGAAANAAGACCCTGTTGAGC
CCCGGNGATCCGCTGGGACAA
GCAGCATATTGATAGATAACT
CTAGCTACGCGTACGCGATCG
CATCTAGCATCGCGTTGCGTT

CATATCGTCGTAGCTAGTACG
CCACACTAGGCTACGTGCGCA
TCGACGCTACCGGCATCGCGC
ACTAGTACGTACGTAGTAGCT
GGATGCTCAGATGGCTATCGG
CGCATTACGGAAGCTCATCGA
AACCATCGGAAGGCCGTTTAA
CAGCTAGGCGCTAGGCGCTTT
CATGCTAGCGCGATCGCGTAG
GCATCGACTCGCGACCGATCC
ACGCATCGACTCGCGCATCGC

condition 1 condition 2
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Our approach to the differential 
processing (DP) task

• Simple likelihood ratio tests with PSG model
• Test for null hypothesis that all frequencies are 

the same

• Test for null hypothesis that frequencies of edges 
out of one vertex (i) are the same

LR =

LR =
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Inference of alternative 
splicing from RNA-Seq data

• Part I - The problem
• Part II - A solution: Probabilistic Splice 

Graphs (PSGs)
• Part III - Evaluating PSG methodology
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Efficient inference for highly-
spliced genes

• DSCAM running time test
– 23,976 isoforms

– 184 read pairs from a 
modENCODE sample

Method RSEM Cufflinks PSG EM

Running time Not possible > 6 hours
(> 90 GB RAM) < 3 seconds
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A simple method for comparison
• The Junction-Read (JR) method
• Keep only reads that align to the splice junctions 

(edges in the PSG)

• Throws away data, but is very robust to model 
assumption violations

0.4

0.6
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Convergence with simulated data
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Comparisons on real data
• Require notion of “distance” between estimates 

from different methods
• Our distance measure:

– per vertex
– maximum difference between probability estimates on 

out-edges of vertex (L-∞ norm)

0.2

0.5
0.3

method A
0.6

0.3
0.1

method B
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How close are the estimates 
from JR and EM on real data?

Vertices from 88 most abundant (> 5000 reads) 
alternatively-spliced genes  in a modENCODE fly data set
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Convergence of estimates on 
real data
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Comparing PSGs of different 
complexity

• Same set of fly data
• Estimated with three 

classes of PSG: line, 
exon, full-length

• Compared estimates 
to those from JR 
(gold-standard)

• No statistically-
significant difference 
between exon and 
full-length graph 
estimates
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Summary of Junction-Read 
comparison results

• Estimates using PSG models are generally close to those 
from the simplistic JR-method
– ⇒PSG model assumptions appear to be reasonable

• PSG estimates converge more quickly as the data set 
increases in size
– ⇒Our EM estimation procedure uses information from all reads, 

not just those that span splice junctions

• Exon-graph estimates as good as those using traditional 
full-length isoform models
– ⇒Independence assumptions of exon graphs appear to be 

reasonable 73



Differential processing detection
# of DP genesDP Accuracy on real data
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Differential processing detection
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Next steps for modeling RNA-
Seq with PSGs

• Graph 
construction
– Exon 

discovery
– Splice junction 

discovery

• Model 
selection
– Learning 

dependencies 
between splice 
events

or

76



Summary
• Alternative splicing is a significant 

complication in RNA-Seq analysis
• Probabilistic Splice Graphs enable 

identifiable models for alternatively spliced 
genes with efficient inference algorithms

• Differential processing (splicing) tests with 
PSG models look promising
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