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Overview

* Biological question
— What is causing differential gene expression?

+ Goal
— Find regulatory motifs in the DNA sequence

* Solution
— FIRE (Finding Informative Regulatory Elements)



Goals for Lecture

Key concepts:
* Entropy

* Mutual information (MI)
* Motif logos

« Using MI to identify cis-regulatory module elements



Gene expression and regulation
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A Common Type of Question

What causes this set of yeast
genes to be up-regulated in
stress conditions?

Genes

Experiments / Conditions

Figure from Gasch et al., Mol. Biol. Cell, 2000



cis-Regulatory Modules (CRMs)

Co-expressed genes are often controlled by specific
configurations of binding sites
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Co-expressed genes have similar
functions in single species

Time

YeaSt 18 time points
cell A gene co-expression network (relationship) can
cycle reveal functional groupings
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Hierarchal clustering, K-means, Gaussian mixture model
(GMM), Principal component analysis (PCA), ...
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Information Theory Background

 Problem

— Create a code to communicate information
 Example

— Need to communicate the manufacturer of each bike

(4




Information Theory Background

* Four types of bikes
* Possible code

Type code
Trek 11
Specialized 10
Cervelo 01
Serotta 00

« Expected number of bits we have to communicate:
2 bits/bike



Information Theory Background

« Can we do better?
* Yes, if the bike types aren’t equiprobable

Type, probability # bits code
P(Trek)=0.5 1 1
P(Specialized) = 0.25 2 01
P(Cervelo) =0.125 3 001
P(Serotta) =0.125 3 000

» Optimal code uses—log, P(c) bits for event with
probability p(¢)

10



Information Theory Background

Type, probability # bits code
P(Trek)=0.5 1 1
P(Specialized) =0.25 2 01
P(Cervelo) =0.125 3 001
P(Serotta) =0.125 3 000

« Expected number of bits we have to communicate:

1.75 bits/bike C

- P(c)log, P(c)
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Entropy

* Entropy is a measure of uncertainty associated with a
random variable

« Can be interpreted as the expected number of bits
required to communicate the value of the variable

C

H(C)= —Z P(c)log, P(c) entropy function for
c=1

binary variable
1.0

Image from Wikipedia 0 | RN e
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How Is entropy related to
DNA sequences”?
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Sequence Logos

1 2 3 4 5 6 7 8
A 01/03/0.1/0.2(0.2/0.4{0.3|/0.1
C 10.5/0.2{0.1/0.1{06|0.1]0.2|0.7
G [0.2/0.2|10.6/0.5|/0.110.2|0.2|0.1
T 10.2{0.3/0.210.2(0.1/0.3{0.3]0.1
or !
I e= = -
o information content logo o
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Sequence Logos
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* Typically represent a binding site

* Frequency logo: Height of each character c is proportional to
P(c)
* Information content logo: based on entropy (H) of a random

variable (C) representing distribution of character states at
each position
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Sequence Logos
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* Height of logo at a given position determined by decrease in
entropy (from maximum possible); i.e., information content

H_—H(C)=log, N — [— " P(c)log, P(c)]
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Mutual Information

* Mutual information quantifies how much knowing the
value of one variable tells about the value of another

entropy of M
entropy of M conditioned on C

\

I(M;C)=H(M)-HM |C)

B P(m,c)
=22 Pmo) 1°g2£P<m>P<c>j
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Correlation vs. Mutual information
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Mutual Information in FIRE

* We can compute the mutual information between a motif
and the clusters as follows

L ¢ P(m,c)

(M) =2, 2 Plmc)log, o S0 -

m=0, 1 represent absence/presence of motif

c ranges over the cluster labels
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Finding Motifs in FIRE

Motifs are represented by regular expressions; initially

each motif is represented by a strict k-mer (e.g.
TCCGTAC)

. Test all k-mers (k=7 by default) to see which have
significant mutual information with the cluster label

. Filter k-mers using a significance test to obtain motif
seeds

. Generalize each motif seed

. Filter motifs using a significance test
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Significance test via randomization

* Given an empirical Ml value for a motif, /

« Randomly shuffle cluster labels of genes (or other
variables such as expression), and calculate M

* Repeat shuffling N, times and get N, Ml values

* Pseudo p-value = sum(/ < N, Ml values)/N,to see if it
IS less than a significance threshold (e.g., 1/N,)

— Z-score = (I — mean(Irandom))/Sigma(lrandom)

Elemento et al., Molecular Cell 2007, Supplement -



Key Step in Generalizing a Motif in FIRE

Randomly pick a position in the motif
« Generalize in all ways consistent with current value at position
« Score each by computing mutual information
» Retain the best generalization

TCCGTAC
TCCI[AG]TAC | TCC[GT]TAC
TCC[ACG]TAC TCeCICEIAC TCC[CGT]TAC
TCC[AGT]TAC

TCC[ACGT]TAC

23



Generalizing a Motif in FIRE

given: k-mer, n

best < null
repeat n times
motif <~ k-mer
repeat
motif < GeneralizePosition(motif) // shown on previous slide
until convergence (no improvement at any position)
if score(motif) > score(best)
best «— motif

return: best
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Generalizing a Motif in FIRE: Example
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Avoiding Redundant Motifs

 Different seeds could converge to similar motifs

TCCGTAC TCCCTAC
TCC[CG]TAC TCC[CG]TAC

 Use mutual information to test whether new motif is
unique and contributes new information

I(M;C|M") .
[(M;M")

M previous motif M new candidate motif (' expression clusters
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Characterizing Predicted Motifs in FIRE

« Mutual information is also used to assess various
properties of found motifs

— orientation bias
— position bias
— interaction with another motif
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Using MI to Determine Orientation Bias

J(S:(C) C indicates cluster
) . . . .
S=1 indicates motif present on transcribed strand
S=0 otherwise (not present or not on transcribed strand)

5' upstream region C S
< B — 0 0
< F>ZI 0 0
) P 1
D— B 0 1

q 3 S 0 Also compute M| where $=1

> P 1 indicates motif present on
4 B 0 complementary strand

b B 1
I‘b 2 1
A—b 2 1
- B , 1
'—b 2 1
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Using MI to Determine Position Bias

I(P;0) P ranges over position bins
0=0, 1 indicates whether or not the motif is
over-represented in a sequence’s cluster

5' upstream region P O
I P o
0 1
' 0 1
0 1
0 1
0 B 1 0 Only sequences containing
. i E: 0 0 the motif are considered for
. > (2) 8 this calculation
0 T > 0
— "b 0 0
0 B 1 0
pt—— 0 0
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Using MI to Determine Motif Interactions

[(M ;M) M,;=0,1 indicates whether or not a sequence

has the motif and is in a cluster for which the

motif is over-represented; similarly for M,
|
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Motif Interactions Example

Yeast motif-motif interactions
White: positive association
Dark red: negative association

N Blue box: DNA-DNA

8lllle 5 Green box: DNA-RNA

d Plus: spatial co-localization

+ | s
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Discussion of FIRE

FIRE

— mutual information used to identify motifs and
relationships among them

— motif search is based on generalizing informative k-
mers

Consider advantages and disadvantages of k-mers
versus PWMs

In contrast to many motif-finding approaches, FIRE
takes advantage of negative sequences

FIRE returns all informative motifs found
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Mutual Information for Gene Networks

* Mutual information and conditional mutual information
can also be useful for reconstructing biological networks

» Build gene-gene network where edges indicate high Ml
INn genes’ expression levels

 Algorithm for the Reconstruction of Accurate Cellular
Networks (ARACNE)
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ARACNE

 (Gaussian kernel estimator to estimate mutual
iInformation

— No binning or histograms

« Data processing inequality
— Prune indirect edges

Margolin et al. BMC Bioinformatics 2006
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