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Goals for lecture

Basic machine learning ideas
Feature selection

Unsupervised learning
— Partitioning vs. hierarchical clustering

Supervised learning
— Classification

Applications in bioinformatics



Knowledge Discovery In
Databases (KDD)
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Example: Machine learning in
genomics
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Feature selection

 Filter approach scores and ranks features independently

of the predictor (classifier).
— For example, t-test, correlation coefficient

Set of all ' Selecting the ' Learning
Best Subset Algorithm

Features

ﬁ Performance

 Wrapper approach uses a classifier/predictive model to
search (many) best features or feature SUDSELS. seiccting e gost susser

— Recursive feature elimination

Set of all
q

Features

Generate a Learning
Subset Algorithm

 Embedded approach uses a classifier/predictive model
to build a (single) model with a subset of features

Selecting the best subset

that are internally selected.

— LASSO regression
Set of all _’

Features

https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-
selection-methods-with-an-example-or-how-to-select-the-right-variables/

Subset

Generate the ’ Learning A!gorithm +

Performance

$» Performance
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Differentially expressed genes

* |dentify genes with different levels in two
conditions

 Examples

— Highly expressed genes in cancer cells vs. health
cells

 Filter method for selecting “feature™ genes



What can we learn from
a data matrix?

Sample

"5

Gene




The World of Machine Learning

scikit-learn
algorithm cheat-sheet

classification
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SciKit learn: http://scikit-learn.org/stable/tutorial/machine learning map/
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Unsupervised learning

« K-means
» Hierarchical clustering

* Network
— Weighted Gene Co-Expression Network



Structure of Genomic Features
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Represent predictors in abstract
high dimensional space
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“Label” Certain Points
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“Cluster” predictors
(Unsupervised)

13



Use Clusters to predict Response
(Unsupervised, guilt-by-association)

w. 14



K-means

1) Pick K random points as putative cluster centers.
2) Group the points to be clustered by the center to which they are

closest.

For example, PCA coefficients over PC1 and PC2

Initialize

Step 1
(assign points 10 centers)

Step 2
(recompute centers)

3) Then take the mean of each group and repeat, with the means now at

the cluster center.

4)Stop when the centers stop moving.

15



K-means: Setup

* X4,..., Xy are data points or vectors of observations

Each observation (vector x;) will be assigned to one and only one cluster

C(i) denotes cluster number for the " observation
Dissimilarity measure: Euclidean distance metric

K-means minimizes within-cluster point scatter:

ZN

W (C) =

29 1 C(i)=k C(j)=k

where
m, is the mean vector of the k" cluster

N, is the number of observations in k" cluster

2
mk”

16



Within and Between Cluster Criteria

Let’s consider total point scatter for a set of N data points:

g COE

l\.)

Distance between two points
T can be re-written as:

T=33 3 (Fdx)s Fdx)

[\.)

=1 C(i)=k C(j)=k C(j)#k
W (C)+ B(C)
If d is square Euclidean distance, then
Where, W(C)=— d(x,,x,) K
kZI:C;k C(]Z):k ! w(C)= sz Zfo _mkHZ
L k=1 Cli)=k
Within cluster K
scatter B(C)= d(x;,x;) S
kg %:k C(Jz);ék ’ and B(C)= ZNkak _mHZ
k=1
Between cluster Grand mean
scatter 17

Minimizing W(C) is equivalent to maximizing B(C)



K-means Algorithm

For a given cluster assignment C of the data points,
compute the cluster means m;:

in
m, = ":CX;:" Jk=1,.. K.
k

For a current set of cluster means, assign each
observation as:

2

C@)=argmin|lx, —m,| ,i=1,....,.N

1<k<K

Iterate above two steps until convergence

18



K-means clustering example
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K-means: summary

Algorithmically, very simple to implement

K-means converges, but it finds a local minimum of
the cost function

Works only for numerical observations

K is a user input; alternatively BIC (Bayesian
information criterion) or MDL (minimum description
length) can be used to estimate K

Outliers can considerable trouble to K-means 20



K-medoids Clustering

K-means is appropriate when we can work with
Euclidean distances

Thus, K-means can work only with numerical,
gquantitative variable types

Euclidean distances do not work well in at least two
situations

— Some variables are categorical

— Qutliers can be potential threats

A general version of K-means algorithm called K-
medoids can work with any distance measure

K-medoids clustering is computationally more

Intensive 2!



K-medoids Algorithm

Step 1: For a given cluster assignment C, find the
observation in the cluster minimizing the total distance to
other points in that cluster:

[, =argmin Zd(xl.,xj).
{ECD=k} C(j)=k

Step 2: Assign  m, =x., k=12,....K

Step 3: Given a set of cluster centers {m,, ..., mx},
minimize the total error by assigning each observation to
the closest (current) cluster center:

C(@i)=argmind(x;,m,),i=1,....N
Iterate steps 1to 3 ==
22



K-medoids Summary

Generalized K-means
Computationally much costlier that K-means
Apply when dealing with categorical data

Apply when data points are not available, but
only pair-wise distances are available

— Kernel functions
Converges to local minimum

23



Choice of K?

« Can Wi(C), i.e., the within cluster distance as a
function of K serve as any indicator?

* Note that W(C) decreases monotonically with
iIncreasing K. That is the within cluster scatter
decreases with increasing centroids.

 Instead look for gap statistics (successive difference
between W, (C)):

We W,  K<K}>>{W,-W, :K>K}

24



Choice of K...
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Hierarchical Clustering

» Build a tree-based hierarchical taxonomy
(dendrogram) from a set of documents.

animal

vertebrate invertebrate

1%%an%\hmmal WKm insect cru?icean

How could you do this with K-means?

26



Hierarchical Clustering

Agglomerative (bottom-up):
— Start with each gene being a single cluster.
— Eventually all genes belong to the same cluster.

Divisive (top-down):

— Start with all genes belong to the same cluster.

— Eventually each gene forms a cluster on its own.

— Could be a recursive application of K-means like algorithms

Does not require the number of clusters K in advance

Needs a termination/readout condition

27



Hierarchical Agglomerative
Clustering (HAC)

« Start with each gene in a separate
cluster

—then repeatedly joins the closest pair
of clusters, until there is only one
cluster.

* The history of merging forms a tree or
hierarchy.

How to measure distance of Clusters’?’?2

8



Distance Metrics

e properties of metrics

dist( X, X; )=0 (non-negativity)
dist(x;,x;) =0 1t and only if x; = x (identity)
dist(x, x;) = dist(x;, x) (symmetry)
dist(x, x;) = dist(x, x,) + dist(x, X;) (triangle inequality)

« some distance metrics

Manhattan ~ dist(X, X;) = E
e

Euclidean CiSt()Q, Xj) = \/2 ()g‘,e - xj.é)z

e ranges over the individual measuremm 29

Xi,e — Xj,e




Correlation distance

 Correlation distance

_ Cov(X,Y)
JVar(X)-Var(Y)

rxy

— Cov(X,Y) stands for covariance of X and Y
 degree to which two different variables are related

— Var(X) stands for variance of X
 measurement of a sample differ from their mean

30



Cluster Distance Measures

single link
(min)

« Single link: smallest distance

between an element in one cluster

and an element in the other, i.e.,
d(C;, Cj) = min{d(Xip, Xjq)}

« Complete link: largest distance (max)
between an element in one cluster
and an element in the other, i.e.,
d(C;, Cj) = max{d(Xp, Xiq)}
average

* Average: avg distance between

elements in one cluster and

elements in the other, i.e.,

d(G;, Cj) = avg{d(xp, qu)}

Machine learning : a probabilistic perspective, Kevin P. Murphy >

COMP24111 Machine Learning, Univ. of Manchester



Cluster Distance Measures

Example: Given a data set of five objects characterized by a single continuous
feature, assume that there are two clusters: C1: {a, b} and Cz: {c, d, €}.

a

b

C

d

e

Feature

1

2

4

5

6

1. Calculate the distance matrix. 2. Calculate three cluster distances between C1 and Ca2.

Single link

a b ¢ d e
alo 1 3 4 5 dist(C,,C,) = min{d(a,c),d(a,d),d(a, e),d(b,c),d(b,d),d(b,e)}
=min{3,4,5,2,3,4}=2
bj1 0 2 3 4 Complete link
cl3s 2 o 1 2 dist(C,,C,) = max{d(a,c),d(a,d),d(a,e),d(b,c),d(b,d),d(b,e)}
=max{3,4,5,2,3,4}=5
dj]4 3 1 0 1
Average
e 5 4 2 1 0" diSt(Cl,Cz)Z d(a,c)+d(a,d)+d(a,e)-|6-d(b,c)+d(b,d)+d(b,e)
_ 3+4+5+2+3+4 :2:35
6 6

COMP24111 Machine Learning, Univ. of Manchester
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* Repeat until number of cluster
(or known # of clusters

Agglomerative Algorithm
» Convert all features (e.g., genes) into a
distance matrix

» Set each gene as a cluster (N genes ->
N clusters at the beginning)

Merge two closest Clusim

Update “distance matrix”

Set Object as Cluster

\ //j\\
—— Nmb;f'd'/1

Merge 2 closest clusters

v

— Update Distance matrix

/_—-_




Bottom-Up Hierarchical Clustering

gveniaset X =1{x...x } of instances
fori:= 1Ttondo

C .= { X,} // each object is initially its own cluster, and a leaf in tree
C:= {c..C}}
Ji=n
while |C|> 1

ji= j

(c,,c):= ar(gncfvl) n dist(c,c,) // find least distant pair in C

// create a new cluster for pair

c=cUg
add a new node j to the tree joining a and b
C:= C-{c,q}Uic}

return tree with root node j 34



Single Link Example
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Dendogram: Hierarchical Clustering
|

» Clustering obtained
by cutting the
dendrogram at a
desired level: each haight of bar indicates

ddgree of distance|within cliister

connected @ = @@ o—
component forms a

cluster.

e.g., Gene 26



Hierarchical Clustering of
Expression Data

SWTL

|

37
http://www.pnas.org/content/95/25/14863.full



Partitioning or Hierarchical?

Partitioning: Hierarchical
— Advantages — Advantages
» Optimal for certain ® Faster computation.
criteria. e Visual.
» Genes automatically — Disadvantages
assigned to clusters ® Unrelated genes are
— Disadvantages eventually joined

e Rigid, cannot correct

* Need initial k;
later for erroneous
» Often slow decisions made earlier.
computation. e Hard to define
* All genes are forced clusters. 28

Into a cluster.



Reading list

A. K. Jain and M. N. Murty and P. J. Flynn, Data
clustering: a review, ACM Computing Surveys, 31:3,
pp. 264 - 323, 1999.

T. R. Golub et. al, Molecular Classification of
Cancer: Class Discovery and Class Prediction by
Gene Expression Monitoring, Science, 286:54 39,
pp. 531 — 537, 1999.

Gasch,A.P. and Eisen,M.B. (2002) Exploring the
conditional coregulatlon of yeast gene expression

through fuzzy k-means clustering. Genome Biol., 3,
1-22.

M. Eisen et. al, Cluster Analysis and Display of

Genome-Wide Expression Patterns. Proc Natl Acad
SciUS A 95, 14863-8, 1998.
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Support Vector Machines

* A very powerful tool for classifications

« Example Applications:
— Text categorization
— Image classification
— Spam email recognition, etc

* |t has also been successfully applied in many
biological problems:
— Disease diagnosis
— Automatic genome functional annotation
— Prediction of protein-protein interactions
— and more...

40



Example: Leukemia patient classification

d
12
10
8
X 6
N
4
2 . ® o
0 S{ﬁﬂ'. ': e
0 2 4 6 8 10 12
MARCKSL1
® ALL AML ® Unknown

ALL: acute lymphoblastic leukemia
AML: acute myeloid leukemia

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006

41



2ZYX

4
2 s o e
0 ’ {’ﬂ.' ... *
0 2 4 6 8 10 12
MARCKSL1

* A simple line suffices to separate the expression profiles
of ALL and AML

42
William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



B e 2
MARCKSL1

* In the case of more than two genes, a line generalizes to a plane or
“hyperplane”.

« For generality, we refer to them all as “hyperplane” 13

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



80 100
MARCKSL 1

Is there a “best” line?

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006

120

44



12

10 |

o 2 4 6 8 10 12
MARCKSL1

* The maximum margin hyperplane

45
William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



* Denote each data point as (x;, y;)

* X IS a vector of the expression profiles

* y;=-1o0r 1, which labels the class

* A hyperplane can be represented as: w*x+ b =0

- The margin-width equals to: 2/ 1l w Il w ll= ~/w ® w

46
http://en.wikipedia.org/wiki/Support_vector_machine



Find a hyperplane such that:
— No data points fall between the lines wex+b=—-landwex+b=+1
— The margin 2/||w|| is maximized

Mathematically,

— Minimize,, ,, 2*||w||?, subject to:

— fory;=1, wex, +b=1

— fory;=-1, wex,+b=-1

— Combining them, for any i, Yi(W® X, +b) =1

The solution expresses w as a linear combination of the x;

Assuming that the data points from two classes are
always easily linearly separable. But that’s not always the

case
47

http://en.wikipedia.org/wiki/Support_vector_machine



« What if...
g
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* Allow a few anomalous data points

h
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8
<
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0 2 4 6 8 10 12
MARCKSL1

49
William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



The soft-margin SVM

2
— mmlmlze— |l w +CE

w,b,s

— subject to, for any i, y,-(W‘x,- +b)=1-s,5 =0

— S; are the slack variables

— C controls the number of tolerated

misclassifications
(It's effectively a regularization parameter on model complexity)

— A small C would allow more misclassifications
— A large C would discourage misclassifications

— Note that even when the data points are linearly
separable, one can still introduce the slack

variables to pursue a larger separation margin
50
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* Are linear separating
hyperplanes enough? Yes
(by a 1D- re——
hyperplane
= dot)

NO

-1 -5 0 5 1
EXxpression

51
William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



« Transform (x;) into (x;, x?)

1.0

Expression * expression
-
N

X 1e6

—
o‘ o
o L—.: -
-D 0 ) 1
EXxpression

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006
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Non-linear SVM

— In some cases (e.g. the above example), even soft-
margin cannot solve the non-separable problem

— Generally speaking, we can apply some function to
the original data points so that different classes
become linearly separable (maybe with the help of
soft-margin)

* In the above example, the function is f(x) = (x, x2)

— The most import trick in SVM: to allow for the
transformation, we only need to define the “kernel
function”, k(x;,x;)=f(x,)* f(x,)

* e.g., a polynomial kernel used in above example

53



Solving SVM

— Formulation of SVM using Lagrangian multipliers

Iwl|®

Minimize

+ Z a;(1 — yi(wTx; + b))

[
— The dual formulatlon of SVM can be expressed as:

Mamze}‘,a ——Ey,yja,ajxl *X;, subjectto
Ey,a,-=0,0 <o, <C no w and b now

— The “Kernel™ x;*x;, can be replaced by more
sophisticated kernel functions:

k(xi’xj)=f(‘xi).f(xj) 54



] 0<0<C

— The x; for which a;> 0 are called support vectors
— They fall between or right on the separating margins

55
from http://cbio.ensmp.fr/~jvert/talks/110401mines/mines.pdf



Tricks for solving SVM

* Finding optimal w & b can be replaced by finding
optimal "Lagrange multipliers” o,

— One only optimizes using the product of x;*x;, now
expressing the solution in terms of positive a, for x; that

function as support vectors

* Non-linear SVM x;*x; is replaced by f(x;)*f(x;), so you
don't need to know f(x;) itself only the product
— Kernel trick: f(x;)*f(x;) is just replaced by k(x;, x;). That is, one
only has to know the “distance” between x; & x; in the high-
dimensional space -- not their actual representation

56



Kernel functions

* Polynomial kernel:
— k(x;,x;)=(x;*x; + a)
— a =1 (inhomogeneous) or 0 (homogenous)

— d controls the degree of polynomial and henceforth
the flexibility of the classifier

— degenerates to linear kernel whena=0and d = 1

« Gaussian kernel:
— k(x;,x)=(-1/0llx,-x, %)

— 0 controls the width of the Gaussian and plays a
similar role as d in the polynomial kernels

S7



Kernel functions in
computational biology

» "Distance” even for non-vector biological data
— Protein-protein interactions
— DNA binding
— Ben-Hur et al., Support Vector Machines and Kernels
for Computational Biology, PLoS Comp. Bio., 2008
* For example, "Spectrum kernels” for sequences

— k-spectrum of a sequence x is all possible k-length
subsequence

— Map the sequence to counts on k-spectrum c¢(x)
— Spectrum kernel K, (x,y)=<c(x), c(y)>
— Leslie et al., PSB, 2002
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kmer-SVM for predicting regulatory
sequence features

* Fletez-Brant et al., NAR, 2013
* For example ESRRB binding sites

A ROC curve = & P-R curve
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Avoid over-fitting by
kernel functions

* High-degree kernels always fit the training data
well, but at increased risks of over-fitting, i.e. the
classifier will not generalize to new data points

* One needs to find a balance between
classification accuracy on the training data and

regularity of the kernel (not allowing the kernel to
be too flexible)

60



A low-degree kernel (left) and an over-fitting high-
degree kernel (right)
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The parameter C has a similar role

« Large C will make few classification errors on the
training data

« But this may not generalize to the testing data

« Small C pursues a large separating margin at the
expenses of some classification errors on the training
data.

* The accuracy more likely to generalize to testing data

62



Intermediate C ®e o

http://cbio.ensmp.fr/~jvert/talks/110401mines/mines.pdf

ERROR

TEST

TRAIN
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e-Support vector regression (¢-SVR)

Main idea:

Find a function /(X)=w-X+5b
that approximates y,,...,pyy:

it has at most € derivation from
the true values y,

* itis as “flat” as possible (to
. avoid overfitting)

E.g., build a model to predict survival of cancer patients that

can admit a one month error (= ¢ ). -



Workshop introducing
machine learning to biologists

 ML4BIO workshop from Gitter Lab

o https://qitter-lab.qithub.io/ml-bio-
workshop/
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