Applied Machine Learning Part II

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2021
Daifeng Wang
daifeng.wang@wisc.edu

Goals for lecture

- Multi-omics data
- Machine learning modeling
 - Empirical risk minimization (ERM)
- Multi-layer network clustering
- Dimensionality reduction & Spectral methods
- Decision tree
- Neural network

Goals for lecture

- Multi-omics data
- Machine learning modeling
 - Empirical risk minimization (ERM)
- Multi-layer network clustering
- Dimensionality reduction & Spectral methods
- Decision tree
- Neural network

Multi-omics

metabolite

Metabolites and Metabolomics

Metabolites are small

Multi-scale mechanisms

Functional genomics to understand mechanisms

Diseaseassociated genomic variants

How do variants function?

Example

N Engl J Med 2015; 373:895-907 DOI: 10.1056/NEJMoa1502214

Hierarchical understanding from genotype to phenotype

Elements Interactions Mechanisms **Prediction &** Prioritization variants pathways disease • gene variants & regulation circuits • genes genes chromatin functions regulatory interaction networks regions TF binding cell types

Multi-omics for understanding functional genomics and gene regulation

Some multi-omics datasets

Human	20,000 genes (2% genome)	Other genomic elements: non-coding RNAs, gene regulatory regions, repeats, and so on (98% genome)
Cell lines	ENCODE (Encyclopedia of DNA Elements) Consortium (> 300 cell types)	
Tissues	GTEX	Genotype-Tissue Expression (GTEx) (> 40 tissues)
Cancers	THE CANCER GENOME ATLAS National Cancer Institute National Human Genome Research Institute (> 40 cancer types)	
Development	BRAIN ATLAS OF TH	SPAN (13 developmental stages, E DEVELOPING HUMAN BRAIN 16 brain regions)
Psychiatric disorders	PsychENCODE Consortium (~2,000 tissues incl. health, Schizophrenia, Autism, Bipolar)	
Neurodegene rative diseases	AD Alzheimer Genetics C	Religious Orders Study International Parkinson's and Memory and Aging Disease Genomics Project (ROSMAP) Consortium (IPDGC)

Goals for lecture

- Multi-omics data
- Machine learning modeling
 - Empirical risk minimization (ERM)
- Multi-layer network clustering
- Dimensionality reduction & Spectral methods
- Decision tree
- Neural network

Multi-omics data integration

Multi-omics data modeling

^{*} Spectrum inspired from Ideker & Lauffenburger, Trends in Biotechnology, 2003

^{*} Christof Angermueller et al. Mol Syst Biol 2016;12:878

Multiview learning for understanding functional multi-omics

- For example, gene regulation can relate to
 - . Genomics; e.g., SNPs
 - 2. Transcriptomics; e.g., genes
 - 3. Proteomics; e.g., transcription factors (TFs)

Cross-omics interactions

 $\Omega_{co}(f^{(1)},f^{(3)})$: SNPs break TF binding sites $\Omega_{co}(f^{(2)},f^{(3)})$: TFs control gene expression $\Omega_{co}(f^{(1)},f^{(2)})$: SNPs associate with gene expression (e.g, eQTLs)

Empirical risk minimization (ERM) for machine learning modeling

$$\begin{split} \mathbf{R}\left(f\right) &= \frac{1}{|S|} \sum_{\substack{(x_i, y_i) \in S}} \ell(f(x_i), y_i) \\ f^* &\in \underset{f}{\operatorname{argmin}} \{\mathbf{R}\left(f\right) + \lambda \Omega(f)\} \end{split} \quad \begin{array}{l} \text{Regularize } f \\ \text{by biological knowledge } \Omega \end{array} \end{split}$$

- e.g., Leukemia patient classification
 - y_i: Acute lymphoblastic leukemia (ALL) vs. Acute myeloid leukemia (AML)
 - $-x_i$: gene expression
 - *− f*: SVM

Empirical risk minimization for multi-view learning (MV-ERM)

Consensus and complementary principles

v hypothesis space $\mathcal{F}^{(1)}$ $\mathcal{F}^{(2)}$ $\mathcal{F}^{(v)}$

Complementary principle

Unique information from each

Consensus principle

Relationship information across views

Factorization-based MV-ERM framework

Complementary G⁽ⁱ⁾

Consensus

• e.g., solved by Multi-view NMF (Liu et al., SIAM ICDM, 2013)

Alignment-based MV-ERM

- For instance, Canonical correlation analysis (CCA)
 - Consensus only
 - $\Omega_{co}(.) = -tr(F_1^T X_1 X_2^T F_2)$ for two views X_1 and X_2 with linear projections F_1 and F_2

ManiNetCluster: manifold alignment to reveal the functional links between gene networks

ManiNetCluster: manifold alignment to reveal the functional links between gene networks

Application: genomic functional linkages between light and dark periods of green alga-

Goals for lecture

- Multi-omics data
- Machine learning modeling
 - Empirical risk minimization (ERM)
- Multi-layer network clustering
- Dimensionality reduction & Spectral methods
- Decision tree
- Neural network

Co-expressed genes have similar functions in single species

Limited knowledge in single species

~ half human genes, 1% human genome plus other 98% genomic elements (non-coding regions) with unknown functions

Integration of co-expressed and orthologous genes across species to transfer function information

OrthoClust: an orthology-based method for clustering cross-species networks (e.g., co-expression networks)

Maximize "modularity" for clustering a single network

Modularity *Q*: measurement on strength of network division

Clustering goal: assign each node a module to maximize "modularity" as an objective function (module is a group of highly connected nodes)

OrthoClust: an orthology-based method for clustering cross-species networks

Every node i is assigned with a module number σ_i .

"Modularity" in species A + "Modularity" in species B + consistency between A & B

Conserved gene co-expression modules discovered human genes having developmental functions

network across 30

developmental stages

expression network

across 19 cell lines

network across 33

developmental stages

OrthoClust reveals better genomic functional groups

OrthoClust's modular genes have similar functions

OrthoClust clusters more orthologs than other clustering methods

Developmental hourglass behavior across conserved modules in a species

Inter-organism

Temporal differences among ortholog expression levels are minimized at phylotypic stage across different species.

Intra-organism

Temporal differences among ortholog expression levels are minimized at phylotypic stage across conserved modules in a species (fly).

Human and Rhesus brain developmental "hourglass"

Goals for lecture

- Multi-omics data
- Machine learning modeling
 - Empirical risk minimization (ERM)
- Multi-layer network clustering
- Dimensionality reduction & Spectral methods
- Decision tree
- Neural network

Reading list for spectral methods

- O Alter et al. (2000). "Singular value decomposition for genome-wide expression data processing and modeling." PNAS 97: 10101
- Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-expression modules. BMC Systems Biology 2007, 1:54
- Z Zhang et al. (2007) "Statistical analysis of the genomic distribution and correlation of regulatory elements in the ENCODE regions." Genome Res 17: 787
- TA Gianoulis et al. (2009) "Quantifying environmental adaptation of metabolic pathways in metagenomics." PNAS 106: 1374.

What is Principal component analysis (PCA)?

- A technique used to reduce the dimensionality of a data set by finding directions of maximum variability
- Projection (typically a rotation) into new axes
- But still retains the dataset's variation

PCA Matrix

- 1. Start with dataset of k variables $X = x_1, x_2 ... x_k$ and n observations.
- 2. Construct **covariance or correlation matrix** for variables.
- 3. <u>The Eigenvalue Problem</u> or Eigenanalysis: matrix diagonalization and solve for eigenvalues and eigenvectors

E.g. Start with a bunch of coordinates

Observations	X1	X2
1	2	5
2	5	6
3	4	2
4	3	7
5	9	-5
n	-5	-837

Interpretation: Eigenvalues & Eigenvectors

Quick Refresher on Matrices

$$\begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix} * \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} ax_1 + by_1 + cz_1 \\ ax_2 + by_2 + cz_2 \\ ax_3 + by_3 + cz_3 \end{pmatrix}$$

because
$$c_{11} = \sum_{k=1}^{4} a_{1k} b_{k1} = 8 \cdot 5 + 3 \cdot 4 + 0 \cdot 3 + 1 \cdot 1 = 53$$

SVD for gene expression data (Alter et al, PNAS 2000)

Notation

- m=1000 genes
 - row-vectors
 - 10 eigengene (v_i) of dimension 10 conditions
- n=10 conditions (assays)
 - column vectors
 - 10 eigenconditions (u_i) of dimension 1000 genes

SVD as sum of rank-1 matrices

•
$$A = USV^T$$

•
$$A = s_1 u_1 v_1^T + s_2 u_2 v_2^T + ... + s_n u_n v_n^T$$

an outer product (uv^T) giving a matrix rather than the scalar of the inner product

•
$$s_1 \ge s_2 \ge \dots \ge s_n \ge 0$$

- What is the rank-r matrix \hat{A} that best approximates A?
 - Minimize $\sum_{i=1}^{m} \sum_{j=1}^{n} (\hat{A}_{ij} A_{ij})^{2}$

LSQ approx. If r=1, this amounts to a line fit.

•
$$\hat{A} = s_1 u_1 v_1^T + s_2 u_2 v_2^T + ... + s_r u_r v_r^T$$

Very useful for matrix approximation

Potential problems of SVD/PCA

If the dataset...

- Lacks Independence
 - NO PROBLEM
- Lacks Normality
 - Normality desirable but not essential
- Lacks Precision
 - Precision desirable but not essential
- Lacks Linearity
 - Problem: Use other non-linear (kernel) methods
- Many Zeroes in Data Matrix (Sparse)
 - Problem: Use Correspondence Analysis

Conclusion

- SVD is the "absolute high point of linear algebra"
- SVD is difficult to compute; but once we have it, we have many things
- SVD finds the best approximating subspace, using linear transformation
- Simple SVD cannot handle translation, non-linear transformation, separation of labeled data, etc.
- Good for exploratory analysis; but once we know what we look for, use appropriate tools and model the structure of data explicitly!
- http://genomicsclass.github.io/book/pages/pca_svd.html

Goals for lecture

- Multi-omics data
- Machine learning modeling
 - Empirical risk minimization (ERM)
- Multi-layer network clustering
- Dimensionality reduction & Spectral methods
- Decision tree
- Neural network

Reading list

- What are decision trees?
 - Nat Biotechnol. 2008 Sep; 26(9): 1011–1013.
- Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?
 - https://academic.oup.com/bib/article/14/3/315/255469

Decision Trees

A decision tree

- Classify data by asking questions that divide data in subgroups
- Keep asking questions until subgroups become homogenous
- Use tree of questions to make predictions

Example: Is a picture taken inside or outside?

b

a	Gene Pair	Interact?	Expression correlation	Shared localization?	Shared function?	Genomic distance
	A-B	Yes	0.77	Yes	No	1 kb
	A-C	Yes	0.91	Yes	Yes	10 kb
	C-D	No	0.1	No	No	1 Mb

Terminology related to Decision Trees

Note:- A is parent node of B and C.

What makes a good rule?

 Want resulting groups to be as homogenous as possible

Quantifying the value of rules

- Decrease in inhomogeneity
 - Most popular metric: Information theoretic entropy
 - Use frequency of classifier characteristic within group as probability
 - Minimize entropy to achieve homogenous group

$$S = -\sum_{i=1}^{m} p_i \log p_i$$

Algorithm

- For each characteristic:
 - Split into subgroups based on each possible value of characteristic
- Choose rule from characteristic that maximizes decrease in inhomogeneity
- For each subgroup:
 - if (inhomogeneity < threshold):</p>
 - Stop
 - else:
 - Restart rule search (recursion)

Retrospective Decision Trees

[Bertone et al. NAR ('01)]

Retrospective Decision Trees Nomenclature

Has a hydrophobic stretch? (Y/N)

Extensions of Decision Trees

- Decision Trees method is very sensitive to noise in data
- Random forests is an ensemble of decision trees, and is much more effective.

Exercise

- A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)
 - https://www.analyticsvidhya.com/blog/2016/04/co mplete-tutorial-tree-based-modeling-scratch-inpython/
- Random Forests in R
 - https://www.r-bloggers.com/random-forests-in-r/
 - http://dni-institute.in/blogs/random-forest-using-rstep-by-step-tutorial/

Goals for lecture

- Multi-omics data
- Machine learning modeling
 - Empirical risk minimization (ERM)
- Multi-layer network clustering
- Dimensionality reduction & Spectral methods
- Decision tree
- Neural network

Reading list

- Deep learning for computational biology
 - http://msb.embopress.org/content/12/7/878
- Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
 - https://www.nature.com/articles/nbt.3300
- https://github.com/hussius/deeplearningbiology
- The Incredible Convergence Of Deep Learning And Genomics

Machine learning and representation learning

Artificial Neural Network

The Incredible Convergence Of Deep Learning And Genomics

Principles of using neural networks for predicting molecular traits from DNA sequence

Convolutional Neural Network

Convolution and pooling operators are stacked, thereby creating a deep network for image analysis

Christof Angermueller et al. Mol Syst Biol 2016;12:878

A pre-trained network can be used as a generic feature extractor

First layer features

	In top left?	In top right?	 In bottom right?
0	0.21	0.24	0.01
0	0.02	0.01	0.25
0	0.01	0.03	0.19

Third layer features

	In left?	In right?	 In bottom?
0	2.51	0.02	2.92
0	0.03	0.01	0.02
•	0.02	0.01	0.01

Christof Angermueller et al. Mol Syst Biol 2016;12:878

Data normalization for and pre-processing for deep neural networks

Christof Angermueller et al. Mol Syst Biol 2016;12:878

Overview of existing deep learning frameworks, comparing four widely used software solutions

	Caffe	Theano	Torch7	TensorFlow
Core language	C++	Python, C++	LuaJIT	C++
Interfaces	Python, Matlab	Python	С	Python
Wrappers		Lasagne, Keras, sklearn- theano		Keras, Pretty Tensor, Scikit Flow
Programming paradigm	Imperative	Declarative	Imperative	Declarative
Well suited for	CNNs, Reusing existing models, Computer vision	Custom models, RNNs	Custom models, CNNs, Reusing existing models	Custom models, Parallelization, RNNs

THE CHROMPUTER

Integrating 1D, 2D signals, and sequence to predict multiple outputs

How to train your DragoNN

https://drive.google.com/file/d/0B4Yo77Kh_QeeaXZKQUtZWjNrWkE

