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Goals for lecture
• Multi-omics data
• Machine learning modeling

– Empirical risk minimization (ERM)
• Multi-layer network clustering
• Dimensionality reduction & Spectral 

methods
• Decision tree
• Neural network
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https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1215-1

Multi-omics



Metabolites and Metabolomics
Metabolites are small 
molecules or chemicals 
involved in metabolism
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Multi-scale mechanisms 



Disease-
associated 
genomic 
variants

How do 
variants 
function?

Gandal et al., Nature Neuroscience, 2016

Functional genomics to 
understand mechanisms
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Example

N Engl J Med 2015; 373:895-907
DOI: 10.1056/NEJMoa1502214
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Hierarchical understanding 
from genotype to phenotype

Elements

• variants
• genes
• regulatory 

regions

Interactions

• gene 
regulation

• chromatin 
interaction

• TF binding

Mechanisms

• pathways
• circuits
• functions

Prediction & 
Prioritization

• disease 
variants & 
genes

• networks
• cell types
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Multi-omics for understanding functional 
genomics and gene regulation
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Some multi-omics datasets
Human 20,000 genes 

(2% genome)
Other genomic elements: non-coding RNAs, gene regulatory 
regions, repeats, and so on… (98% genome)

Cell lines

Tissues

Cancers

Development

Psychiatric 
disorders

Neurodegene
rative 
diseases

(13 developmental stages,  
16 brain regions)

Genotype-Tissue Expression (GTEx)
(> 40 tissues)

ENCODE (Encyclopedia of DNA Elements) Consortium
(> 300 cell types)

The Cancer Genome Atlas (TCGA)
(> 40 cancer types)

PsychENCODE Consortium 
(~2,000 tissues incl. health, Schizophrenia, Autism, Bipolar)

Religious Orders Study 
and Memory and Aging 
Project (ROSMAP)

International Parkinson's 
Disease Genomics 
Consortium (IPDGC)
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http://www.nature.com/nrg/journal/v16/n2/full/nrg3868.html

Multi-omics data integration



Multi-omics data modeling

* Spectrum inspired from Ideker & Lauffenburger, Trends in Biotechnology, 2003
* Christof Angermueller et al. Mol Syst Biol 2016;12:878 

Genotype

AGEBPD

Phenotype

Genes

Modules

Higher-
order 

groupings
(e.g., 

pathways, 
circuits)

Cell types

…

Regulatory 
elements

Interactions between 
elements (e.g., co-

expression, regulation)

Genomic elements (e.g., GWAS, 
differentially expressed genes) 

Integrative & Predictive 
model (e.g., deep neural 

network)

Biological 
Interpretation
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Multiview learning for understanding 
functional multi-omics

Nguyen, Wang, PLoS Computational Biology, 2020

• For example, gene regulation 
can relate to
1. Genomics; e.g., SNPs
2. Transcriptomics; e.g., 

genes
3. Proteomics; e.g., 

transcription factors (TFs)

Ωco(f(2),f(3)): TFs control gene expression 

Ωco(f(1),f(3)): SNPs break TF binding sites

Ωco(f(1),f(2)): SNPs associate with 
gene expression (e.g, eQTLs)

Cross-omics interactions
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Empirical risk minimization (ERM) 
for machine learning modeling 
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• e.g., Leukemia patient classification
– yi: Acute lymphoblastic 

leukemia (ALL) vs. Acute 
myeloid leukemia (AML)

– xi: gene expression
– f: SVM

Nguyen, Wang, PLoS Computational Biology, 2020

Nobel, Nature Biotech, 2006

Regularize f 
by biological 
knowledge Ω
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Empirical risk minimization for 
multi-view learning (MV-ERM) 

Nguyen, Wang, PLoS Computational Biology, 2020

Regularize f by biological 
knowledge Ω from single 
omics Regularize f by 

biological knowledge 
Ωco across multi-
omics
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Consensus and complementary 
principles

Nguyen, Wang, PLoS Computational Biology, 2020

Complementary principle
• Unique information from each 

view Consensus principle
• Relationship 

information across 
views
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Factorization-based MV-ERM 
framework

Consensus 
!𝐹• e.g., solved by Multi-view NMF (Liu et al., SIAM ICDM, 2013)

Complementary 𝐺(")
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Alignment-based MV-ERM 
framework Common latent space

• For instance, Canonical correlation analysis (CCA)
– Consensus only
– Ω$% . = −𝑡𝑟(𝐹&'𝑋&𝑋('𝐹() for two views 𝑋& and 𝑋( with linear 

projections 𝐹& and 𝐹(

Nguyen, Wang, PLoS Computational Biology, 2020
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ManiNetCluster: manifold alignment to reveal 
the functional links between gene networks

Multi-view datasets (e.g., 
diseases, species, conditions)

Functional linkages across dimensions

𝑎𝑟𝑔𝑚𝑖𝑛!!,!" 𝜆(
#,$

𝑓% 𝑋# − 𝑓% 𝑋$
&𝑆% 𝑖, 𝑗 + 𝜆(

#,$

0𝑓' 𝑌# − 𝑓' 𝑌$
&𝑆'(𝑖, 𝑗 + (1 − 𝜆)(

#,$

0𝑓% 𝑋# − 𝑓' 𝑌$
&𝑊(𝑖, 𝑗

Nguyen, Blaby, Wang, BMC Genomics, 2019
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(A)

(B)

functional linkage (Module 34)

protein postranslational
modification

protein degradation

amino acid
metabolism

signalling G-proteins

protein targeting

UDP glucosyl

RNA
regulation

of
transcription

cell motility

cell organisation

secondary
metabolism

transport ABC
transporters

conserved (Module 52)

signalling receptor kinases

transport

dark period-specific (Module 60)

protein postranslational
modification
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systems
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Application: genomic functional linkages between light and dark periods of green alga 

ManiNetCluster: manifold alignment to reveal 
the functional links between gene networks

Nguyen, Blaby, Wang, BMC Genomics, 2019
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Co-expressed genes have similar 
functions in single species

A gene co-expression network (relationship) can 
reveal functional groupings
• Hierarchal clustering, K-means, Gaussian mixture model 

(GMM), Principal component analysis (PCA), …

Eisen et al., PNAS, 1998. Carlson et al., BMC Bioinformatics, 2006.

Yeast 
cell 
cycle

Protein synthesis

node: gene
edge: expression 
correlation

60
00

 g
en

es

18 time points
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Limited knowledge in single species
~ half human genes, 1% human genome plus other 98% genomic 
elements (non-coding regions) with unknown functions 

http://www.discoveryandinnovation.com/BIOL202/notes/lecture24.html

How do we know human gene 
functions during embryonic or brain 
development?
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Integration of co-expressed and 
orthologous genes across species to 

transfer function information
co-expressed

orthologs

gene
Cross-species gene co-expression network

A human gene with
developmental functions

worm genes with
developmental 
functions
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OrthoClust: an orthology-based method 
for clustering cross-species networks 

(e.g., co-expression networks)

Yan*, Wang*, et al., Genome Biology, 2014
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Maximize “modularity” for 
clustering a single network

Q =
1
2m

Wij −
kik j
2m

"

#
$

%

&
'δσ iσ j

i, j
∑

normalization
m: total number of edges

kik j
2m

= pij=expected edge weight that 
would go between i and j

sum over nodes within a 
group (module) 

edge weight between 
nodes i and j

Modularity Q: measurement on strength of network division 

low high Brede, Europhysics Letters, 2010.

Newman, PNAS, 2006.

Clustering goal: assign each node a module 
to maximize “modularity” as an objective function

(module is a group of highly connected nodes)
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OrthoClust: an orthology-based method for 
clustering cross-species networks

2
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2
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3
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Species A

Species B

co-expressed

orthologs

species A 
specific

conserved modules

species B specific

Every node i is assigned with a module number σi. 

H =QA +QB +κ δσ iσ j'
(i, j ')∈Ortho
∑

"Modularity" in species A  +   "Modularity" in species B  + consistency between A & B

reward an 
orthologous pair 
in the same module

Objective 
function

Yan*, Wang*, et al., Genome Biology, 2014
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Conserved gene co-expression 
modules discovered human genes 

having developmental functions

Gerstein*,…, Wang*, et al., Nature, 2014

Conservation of module 
across number of species

19,901 20,377 13,623 genes (~55,000)

…

worm-specific

worm-fly
conserved

human-worm-
fly conserved

16
hum

an-w
orm

-fly
conserved m

odules

20,377 gene co-expression 
network across 33 

developmental stages

13,623 gene co-expression 
network across 30 

developmental stages

19,901 gene co-
expression network 
across 19 cell lines 30



OrthoClust reveals better 
genomic functional groups

pairs between modules pairs within modules
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OrthoClust modules

Pairs in 
OrthoClust modules

OrthoClust’s modular genes 
have similar functions

!!!!!!!!!! OrthoClust!(κ=0)! OrthoClust!(κ=3)!PAM!Hierarchical!clustering!K<means!

OrthoClust clusters more orthologs
than other clustering methods
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Developmental hourglass behavior 
across conserved modules in a species

Hourglass

Gerstein*,…, Wang*, et al., Nature, 2014

Intra-organism
Temporal differences 

among ortholog
expression levels  are 

minimized at phylotypic
stage across 

conserved modules in 
a species (fly). 

Expression

Ti
m

e

Inter-organism
Temporal differences 

among ortholog
expression levels are 

minimized at phylotypic
stage across different 

species.
Kalinka et al. Nature, 2010

Expression

Tim
e
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Human and Rhesus brain 
developmental “hourglass” 

from spatiotemporal gene co-
expression networks 

Ying, ..., Sestan, Science, 2018

Li, …, Wang, ..., Sestan, Science, 2018

Br
ai

n 
re

gi
on

s
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Reading list for spectral methods
• O Alter et al. (2000). "Singular value decomposition for 

genome-wide expression data processing and modeling."  
PNAS 97: 10101

• Langfelder P, Horvath S (2007) Eigengene networks for 
studying the relationships between co-expression 
modules. BMC Systems Biology 2007, 1:54 

• Z Zhang et al. (2007) "Statistical analysis of the genomic 
distribution and correlation of regulatory elements in the 
ENCODE regions." Genome Res 17: 787

• TA Gianoulis et al. (2009) "Quantifying environmental 
adaptation of metabolic pathways in metagenomics." 
PNAS 106: 1374. 
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What is Principal component 
analysis (PCA) ?

• A technique used to reduce the dimensionality of a data set 
by finding directions of maximum variability

• Projection (typically a rotation) into new axes 
• But still retains the dataset’s variation

Adapted from http://www.astro.princeton.edu/~gk/A542/PCA.ppt

y 2

y 1
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PCA Matrix
1. Start with dataset of k variables X = x1, x2 ... xk and n 

observations.
2. Construct covariance or correlation matrix for variables.
3. The Eigenvalue Problem or Eigenanalysis: matrix 

diagonalization and solve for eigenvalues and eigenvectors

E.g. Start with a bunch of coordinates

Observations X1 X2

1 2 5

2 5 6

3 4 2

4 3 7

5 9 -5

…

n -5 -837



Interpretation:
Eigenvalues & Eigenvectors

4.0 4.5 5.0 5.5 6.0
2

3

4

5

λ1
λ2

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt
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Quick
Refresher on 

Matrices

http://www.catonmat.net/blog/mit-linear-algebra-part-three/

http://eli.thegreenplace.net/2015/visualizing-matrix-multiplication-as-a-linear-combination/ 39
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SVD for gene expression data
(Alter et al, PNAS 2000)

http://www.gersteinlab.org/courses/452/
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Notation
• m=1000 genes

– row-vectors 
– 10 eigengene (vi) of dimension 10 

conditions
• n=10 conditions (assays)

– column vectors 
– 10 eigenconditions (ui) of 

dimension 1000 genes

http://www.gersteinlab.org/courses/452/
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SVD as sum of rank-1 
matrices

• A = USVT

• A = s1u1v1T + s2u2v2T +… + snunvnT

• s1 ≥ s2 ≥ … ≥ sn ≥ 0
• What is the rank-r matrix A that best 

approximates A ?
– Minimize 

• A = s1u1v1T + s2u2v2T +… + srurvrT

• Very useful for matrix approximation

( )2
1 1

ˆ
m n

ij ij
i j

A A
= =

-åå

an outer product 
(uvT ) giving a 
matrix rather than 
the scalar of the 
inner product

LSQ approx. If r=1, 
this amounts to a 
line fit. 

http://www.gersteinlab.org/courses/452/



Potential problems of 
SVD/PCA

If the dataset…
• Lacks Independence

– NO PROBLEM
• Lacks Normality

– Normality desirable but not essential
• Lacks Precision

– Precision desirable but not essential
• Lacks Linearity

- Problem: Use other non-linear (kernel) methods
• Many Zeroes in Data Matrix (Sparse)

– Problem: Use Correspondence Analysis
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Conclusion
• SVD is the “absolute high point of linear algebra”
• SVD is difficult to compute; but once we have it, we have 

many things
• SVD finds the best approximating subspace, using linear 

transformation
• Simple SVD cannot handle translation, non-linear 

transformation, separation of labeled data, etc.
• Good for exploratory analysis; but once we know what 

we look for, use appropriate tools and model the 
structure of data explicitly!

• http://genomicsclass.github.io/book/pages/pca_svd.html
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Reading list

• What are decision trees?
– Nat Biotechnol. 2008 Sep; 26(9): 1011–1013.

• Data mining in the Life Sciences with 
Random Forest: a walk in the park or lost in 
the jungle?
– https://academic.oup.com/bib/article/14/3/315/255

469
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https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=18779814
https://academic.oup.com/bib/article/14/3/315/255469


Decision Trees

• Classify data by asking 
questions that divide 
data in subgroups

• Keep asking questions 
until subgroups become 
homogenous

• Use tree of questions to  
make predictions

6 The random decision forest model

Fig. 2.1:Decision tree. (a) A tree is a set of nodes and edges organized
in a hierarchical fashion. In contrast to a graph, in a tree there are no
loops. Internal nodes are denoted with circles and terminal nodes with
squares. (b) A decision tree is a tree where each split node stores a test
function to be applied to the incoming data. Each leaf stores the final
answer (predictor). This figure shows an illustrative decision tree used
to figure out whether a photo represents and indoor or outdoor scene.

A tree is a collection of nodes and edges organized in a hierarchical
structure (fig. 2.1a). Nodes are divided into internal (or split) nodes
and terminal (or leaf) nodes. We denote internal nodes with circles
and terminal ones with squares. All nodes have exactly one incoming
edge. Thus, in contrast to graphs a tree does not contain loops. Also, in
this document we focus only on binary trees where each internal node
has exactly two outgoing edges.

A decision tree is a tree used for making decisions. For instance,
imagine we have a photograph and we need to construct an algorithm
for figuring out whether it represents an indoor scene or an outdoor
one. We can start by looking at the top part of the image. If it is blue
then that probably corresponds to a sky region. However, if also the

Example: Is a picture taken inside or outside?
Criminisi, Shotton, and Konukoglu Microsoft Technical Report 2011
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A hypothetical example of how a decision tree might predict protein-protein interactions
Nat Biotechnol. 2008 Sep; 26(9): 1011–1013.
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Terminology related to Decision Trees

https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/
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Rule 1 Rule 2

What makes a good rule?

• Want resulting groups to be as 
homogenous as possible

2/3 Groups homogenous
àGood rule

All groups still 50/50
à Unhelpful rule

Nando de Freitas 2012 University of British Columbia CPSC 340
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Quantifying the value of rules

• Decrease in inhomogeneity
– Most popular metric: Information theoretic entropy

– Use frequency of classifier characteristic within 
group as probability

– Minimize entropy to achieve homogenous group

mixture of real-valued and categorical features, as well as items with some missing features.
They are expressive enough to model many partitions of the data that are not as easily achieved
with classifiers that rely on a single decision boundary (such as logistic regression or support
vector machines). However, even data that can be perfectly divided into classes by a hyperplane
may require a large decision tree if only simple threshold tests are used. Decision trees naturally
support classification problems with more than two classes and can be modified to handle
regression problems. Finally, once constructed, they classify new items quickly.

Constructing decision trees
Decision trees are grown by adding question nodes incrementally, using labeled training
examples to guide the choice of questions1,2. Ideally, a single, simple question would perfectly
split the training examples into their classes. If no question exists that gives such a perfect
separation, we choose a question that separates the examples as cleanly as possible.

A good question will split a collection of items with heterogeneous class labels into subsets
with nearly homogeneous labels, stratifying the data so that there is little variance in each
stratum. Several measures have been designed to evaluate the degree of inhomogeneity, or
impurity, in a set of items. For decision trees, the two most common measures are entropy and
the Gini index. Suppose we are trying to classify items into m classes using a set of training
items E. Let pi (i = 1,…,m) be the fraction of the items of E that belong to class i. The entropy
of the probability distribution  gives a reasonable measure of the impurity of the set E.

The entropy, , is lowest when a single pi equals 1 and all others are 0, whereas
it is maximized when all the pi are equal. The Gini index2, another common measure of

impurity, is computed by . This is again zero when the set E contains items from
only one class.

Given a measure of impurity I, we choose a question that minimizes the weighted average of
the impurity of the resulting children nodes. That is, if a question with k possible answers

divides E into subsets E1…,Ek, we choose a question to minimize . In many
cases, we can choose the best question by enumerating all possibilities. If I is the entropy
function, then the difference between the entropy of the distribution of the classes in the parent
node and this weighted average of the children’s entropy is called the information gain. The
information gain, which is expressible via the Kullback-Leibler divergence6, always has a
nonnegative value.

We continue to select questions recursively to split the training items into ever-smaller subsets,
resulting in a tree. A crucial aspect to applying decision trees is limiting the complexity of the
learned trees so that they do not overfit the training examples. One technique is to stop splitting
when no question increases the purity of the subsets more than a small amount. Alternatively,
we can choose to build out the tree completely until no leaf can be further subdivided. In this
case, to avoid overfitting the training data, we must prune the tree by deleting nodes. This can
be done by collapsing internal nodes into leaves if doing so reduces the classification error on
a held-out set of training examples1. Other approaches, relying on ideas such as minimum
description length1,6,7, remove nodes in an attempt to explicitly balance the complexity of the
tree with its fit to the training data. Cross-validation on left-out training examples should be
used to ensure that the trees generalize beyond the examples used to construct them.

Kingsford and Salzberg Page 2

Nat Biotechnol. Author manuscript; available in PMC 2009 June 24.
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Algorithm
• For each characteristic:

– Split into subgroups based on each possible value 
of characteristic

• Choose rule from characteristic that 
maximizes decrease in inhomogeneity

• For each subgroup:
– if (inhomogeneity < threshold):

• Stop

– else:
• Restart rule search (recursion)
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Analysis of the Suitability of 500 
M.thermo. proteins 
to find optimal sequences purification

Retrospective Decision Trees

[Bertone et al. NAR (‘01)]
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ExpressibleNot 
Expressible

Retrospective Decision Trees
Nomenclature

356 
total

Has a hydrophobic stretch? (Y/N)
[Bertone et al. NAR (‘01)]
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Extensions of Decision Trees

• Decision Trees method is very sensitive to noise in data
• Random forests is an ensemble of decision trees, and is much more 

effective.
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Exercise
• A Complete Tutorial on Tree Based Modeling 

from Scratch (in R & Python)
– https://www.analyticsvidhya.com/blog/2016/04/co

mplete-tutorial-tree-based-modeling-scratch-in-
python/

• Random Forests in R
– https://www.r-bloggers.com/random-forests-in-r/
– http://dni-institute.in/blogs/random-forest-using-r-

step-by-step-tutorial/

56
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Reading list

• Deep learning for computational biology
– http://msb.embopress.org/content/12/7/878

• Predicting the sequence specificities of 
DNA- and RNA-binding proteins by deep 
learning
– https://www.nature.com/articles/nbt.3300

• https://github.com/hussius/deeplearning-
biology

• The Incredible Convergence Of Deep 
Learning And Genomics 58

https://www.nature.com/articles/nbt.3300
https://github.com/hussius/deeplearning-biology
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjAm_Tbx-bXAhXCmOAKHUKrCxoQFggvMAA&url=https%3A%2F%2Fhackernoon.com%2Fthe-incredible-convergence-of-deep-learning-and-genomics-2f86838ecb7d&usg=AOvVaw396yBQW0RO9jYdWP_jcX8H


Machine learning and representation learning

Christof Angermueller et al. Mol Syst Biol 2016;12:878© as stated in the article, figure or figure legend
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Artificial Neural Network

Christof Angermueller et al. Mol Syst Biol 2016;12:878
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The Incredible Convergence Of Deep 
Learning And Genomics

Johnny Israeli
61

https://hackernoon.com/@johnnyisraeli?source=post_header_lockup


Principles of using neural networks for predicting 
molecular traits from DNA sequence

Christof Angermueller et al. Mol Syst Biol 2016;12:878© as stated in the article, figure or figure legend
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Convolutional Neural Network

Christof Angermueller et al. Mol Syst Biol 2016;12:878

63



Convolution and pooling operators are stacked, 
thereby creating a deep network for image analysis

Christof Angermueller et al. Mol Syst Biol 2016;12:878

© as stated in the article, figure or figure legend
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A pre-trained network can be used as a 
generic feature extractor

Christof Angermueller et al. Mol Syst Biol 2016;12:878

© as stated in the article, figure or figure legend
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Data normalization for and 
pre-processing for deep neural networks

Christof Angermueller et al. Mol Syst Biol 2016;12:878

© as stated in the article, figure or figure legend

66



Overview of existing deep learning 
frameworks, comparing four widely used 

software solutions

Christof Angermueller et al. Mol Syst Biol 2016;12:878
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Johnny Israeli
68

https://hackernoon.com/@johnnyisraeli?source=post_header_lockup


How to train your DragoNN
• https://drive.google.com/file/d/0B4Yo77Kh_QeeaXZKQUtZWjNrWkE

/view

Johnny Israeli
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https://drive.google.com/file/d/0B4Yo77Kh_QeeaXZKQUtZWjNrWkE/view
https://hackernoon.com/@johnnyisraeli?source=post_header_lockup

