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• Introduction on single cell sequencing 
• Single-cell RNA sequencing data processing & 

analysis 
• Cell-type gene regulatory networks
• scATAC-seq data & analysis plus integration with 

scRNA-seq
• Single cell deconvolution 
• Dropout
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Outline



Why study single cells?
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Cells are our core constituents, are classified by characteristic molecules, structures, and functions

https://www.youtube.com/watch?v=PRjX3-m16cw



Why study single cells? 
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Genotype Cell Phenotype

Cells are key intermediate from genotype to phenotype, also are essential for functional 
dissection of genetic variants

https://www.youtube.com/watch?v=PRjX3-m16cwhttps://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/SingleCell/slides/2018-07-25_CRUK_CI_summer_school-scRNAseq.pdf



Bulk vs scRNA-seq
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Bulk RNA-seq

scRNA-seq

average  
expression 

level

Population 1

Population 2

Population 3
Population 4

distribution of 
expression 

levels

• comparative transcriptomics
• quantifying expression signatures from ensembles
• insufficient for studying heterogeneous system

• inference of gene regulatory networks across the cells
• heterogeneity of cell responses
• cell type identification



How can we study single cell?
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üCore technology üComputationüSample prep

2012: 18 cells 2020: ~100,000 cells

https://www.youtube.com/watch?v=PRjX3-m16cw



Single cell technology
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inDrops 10x Genomics Drop-seq Seq-well (Honeycomb) SMART-seq

Cell capture 
efficiency ~70-80% ~50-70% ~10% ~80% ~80%

Time to capture
10k  cells ~30min 10min 1-2 hours 5-10min --

Encapsulation type
Droplet Droplet Droplet Nanolitre well Plate-based

Library prep CEL-seq
Linear amplification by IVT

SMART-seq  
Exponential PCR 

based  
amplification

SMART-seq  
Exponential PCR 

based  amplification

SMART-seq  
Exponential PCR 

based  
amplification

SMART-seq  Exponential 
PCR based  amplification

Commercial Yes Yes -- Yes (Summer 2020) Yes

Cost (~$ per cell) ~0.06 ~0.2 ~0.06 ~0.15 1

Strengths • Good cell capture

• Cost-effective

• Real-time monitoring
• Customizable

• Good cell capture

• Fast and easy to run

• Parallel sample collection
• High gene / cell counts

• Cost-effective

• Customizable

• Good cell capture

• Cost-effective

• Real-time monitoring
• Customizable

• Good cell capture

• Good mRNA capture

• Full-length transcript
• No UMI

Weaknesses Difficult to run Expensive Difficult to run & low

cell  capture

efficiency

Available Soon Expensive

https://github.com/hbctraining/scRNA-seq/blob/master/slides/Single_Cell_2_27_20.pdf



10x Genomics
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Single Cell 3’
V3.1 Gel Bead

• Step1 : GEM Generation & Barcoding
• GEM:  Gel Beads-in-emulsion partition 

that encapsulates each tiny micro-
reaction within the Chromium system

• Step2 : Post GEM-RT Cleanup 
& cDNA Amplification

• Step3:  3ʹ Gene Expression 
Library Construction

Chromium Single Cell 3' Reagent Kits User Guide (v3.1 Chemistry).User Guide, v3.1 Next GEM Chemistry, Last Modified on November 22, 2019, Permalink
https://support.10xgenomics.com/single-cell-gene-expression/index/doc/user-guide-chromium-single-cell-3-reagent-kits-user-guide-v31-chemistry

https://support.10xgenomics.com/permalink/1kY1QNbkCP7VLkpTy1uvCi


Workflow for typical 
scRNA-seq experiment

9https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/SingleCell/slides/2018-07-25_CRUK_CI_summer_school-scRNAseq.pdf



UMI
Unique molecular identifier 

• UMIs are short (4-10bp) random barcodes added to transcripts during 
reverse-transcription. They enable sequencing reads to be assigned to 
individual transcript molecules and thus the removal of amplification 
noise and biases from scRNA-Seq data

10
https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/SingleCell/slides/2018-07-25_CRUK_CI_summer_school-scRNAseq.pdf
http://data-science-sequencing.github.io/Win2018/lectures/lecture16/

• They reduce the amplification 
noise by allowing (almost) 
complete de-duplication of 
sequenced fragments

Grouping barcodes 
to assign reads to cellsBiased paired-end reads

Drop-Seq workflow

https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/SingleCell/slides/2018-07-25_CRUK_CI_summer_school-scRNAseq.pdf


Single-cell RNA sequencing 
data processing & analysis 

• Dimensional reduction
• Non-linear: t-SNE, UMAP
• Linear: PCA

• Cell clustering
• K-means
• hierarchical clustering
• graph-based clustering

• Cell type annotation
• SingleR

• Cell type markers
• Differential expression analysis 

• Pseudo timing

11



Single-cell RNA-seq workflow
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Luecken, MD and Theis, FJ. Current best practices in single‐cell RNA‐seq analysis: a tutorial, Mol Syst 
Biol 2019 (doi: https://doi.org/10.15252/msb.20188746)

• Generation of the count matrix
• Quality control of the raw 

counts
• Marker gene identification

• Single-cell differential expression 
analysis

https://doi.org/10.15252/msb.20188746


Single-cell RNA-seq process

13Lafzi et al. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies, Nature Protocols 2018 (https://doi.org/10.1038/s41596-018-0073-y)



• Compute an 𝑁×𝑁 similarity matrix in the high-dimensional input space
• Define an 𝑁×𝑁 similarity matrix in the low-dimensional embedding space
• Define cost function - sum of 𝐾𝐿 divergence between the two probability 

distributions at each point
• Iteratively learn low-dimensional embedding by minimizing the cost function 

using gradient descent

tSNE
t-Stochastic Neighborhood Embedding

14L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. JMLR2008
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• Similarity matrix at high dimension:

• Modulization

• Similarity matrix at low dimension:

• Cost Function (Kullback-Leibler divergence):

• Derivatives:

High dimension

= 𝑝!"
i

j

i

j

Low dimension

where τ i2 is the variance for the Gaussian 
distribution centered around xi

Given a collection of points 𝑋 = 𝑥!, … , 𝑥" ⊂ 𝑅#, find a collection of points 𝑌 =
𝑦!, … , 𝑦" ⊂ 𝑅#! , where 𝑑 ≪ 𝑑′. 𝑝$% and 𝑞$% measure the conditional probability that a 

point i would pick point j as it’snearest neighbor, in high (p) and low (q) dimensional space
respectively.

=𝑞!"

L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. JMLR2008



Vertex                        Edge                             Triangle                    Tetrahedron                   k-simplex
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𝒙𝟏 𝒙𝟏 𝒙𝟐
𝒙𝟏 𝒙𝟐

𝒙𝟑

𝒙𝟏
𝒙𝟐

𝒙𝟑

𝒙𝟒

UMAP
Uniform Manifold Approximation and Projection
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• UMAP is based on topological structures in the multidimensional space (simplices)
• Simplicial complexes are a means to construct topological spaces out of simple 

combinatorial components, and calculate the relative point distances in the low 
dimension

• https://www.youtube.com/watch?v=nq6iPZVUxZU
• https://nbisweden.github.io/excelerate-scRNAseq/session-dim-reduction/lecture_dimensionality_reduction.pdf
• https://umap-learn.readthedocs.io/en/latest/how_umap_works.html

Simplicial complex Collection of simplices

https://www.youtube.com/watch?v=nq6iPZVUxZU
https://nbisweden.github.io/excelerate-scRNAseq/session-dim-reduction/lecture_dimensionality_reduction.pdf
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• Similarity matrix at high dimension:

• Modulization

• Similarity matrix at low dimension:

• Cost Function ( binary cross-entropy (CE)): • Derivatives:

Let 𝑋 = 𝑥!, … , 𝑥" be the input dataset, with a metric (or dissimilarity measure) 
𝑑 ∶ 𝑋×𝑋 → ℝ≫' . Given an input hyperparameter 𝑘, for each 𝑥% we compute the 
set 𝑥%!, … , 𝑥%( of the 𝑘 nearest neighbors of 𝑥% under the metric 𝑑. Given a 
collection of points 𝑋, find a collection of points 𝑌 = 𝑦!, … , 𝑦" ⊂ 𝑅#! , where 𝑑 ≪
𝑑′. 𝑝$% and 𝑞$% measure the conditional probability that a point 𝑖 would pick point j as it’s
nearest neighbor, in high (𝑝) and low (𝑞) dimensional space respectively. 

https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
arXiv:1802.03426

UMAP uses the family of curves 1/𝑎×𝑦!" for modelling distance 
probabilities in low dimensions, 𝑎 and 𝑏 are hyperparameters

https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
https://arxiv.org/abs/1802.03426


Unsupervised clustering of 
scRNA-seq

18

• Feature selection and dimensionality reduction extracts the most 
informative genes and strongest signals from background noise, 
respectively

• Cell–cell distances are then calculated in the lower dimensional space 
and used to either construct a cell–cell distance graph or used directly 
by clustering algorithms to assign cells to clusters

Kiselev, V.Y., Andrews, T.S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet 20, 273–282 (2019). https://doi.org/10.1038/s41576-018-0088-9



Clustering methods for scRNA-seq

19

Unsupervised clustering methods:
• K-means
• hierarchical clustering
• graph-based clustering

Tools for graph-based clustering:
• Seurat: Louvain, Leiden, SLM
• igraph:fast greedy, Louvain, optimal, walktrap, spinglass, infomap

Kiselev, V.Y., Andrews, T.S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet 20, 273–282 (2019). https://doi.org/10.1038/s41576-018-0088-9



Graph-based clustering
• “A community is subset of actors among whom there are relatively 

strong, direct, intense, frequent or positive ties”
• Some of community detection methods can be applied to scRNA-seq 

data by building a graph where each vertice represents a cell and 
(weight of) the edge measures similarity between two cells

• Graph-based clustering is the most popular clustering algorithm in 
scRNA-seq data analysis, and has been reported to have outperformed 
other clustering methods in many situations (Freytag et al. 2018)

20

• Freytag, Saskia, Luyi Tian, Ingrid Lönnstedt, Milica Ng, and Melanie Bahlo. 
2018. “Comparison of Clustering Tools in R for Medium-Sized 10x Genomics 
Single-Cell Rna-Sequencing Data.” F1000Research 7. Faculty of 1000 Ltd.

• Wasserman, S. & Faust, K. (1994) Social Network Analysis (Cambridge Univ. 
Press, Cambridge, U.K.).

• https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-
workshop/public/clustering-and-cell-annotation.html#ref-freytag2018comparison

https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html


Graph-based clustering
Building a graph

21

• Step1: Build an unweighted k-
Nearest Neighbor (kNN) graph 

A graph in which two vertices 𝑝 and 𝑞
are connected by an edge, if the 
distance between p and q is among 
the 𝑘-th smallest distances from 𝑝 to 
other objects from 𝑝. 

• Step2: Add weights, and obtain a 
Shared Nearest Neighbor (SNN) graph 

A graph in which weights define 
proximity, or similarity between two nodes 
in terms of the number of neighbors (i.e., 
directly connected nodes) they have in 
common.

https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html#ref-freytag2018comparison



Modularity
• Modularity (Newman and Girvan 2004) is not the only quality function 

for graph-based clustering, but it is one of the first attempts to embed 
in a compact form many questions including the definition of quality 
function and null model etc.

22

• Newman, Mark EJ, and Michelle Girvan. 2004. “Finding and Evaluating Community Structure in Networks.” Physical 
Review E 69 (2). APS: 026113. 

• https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html#ref-
freytag2018comparison

𝐴#,% : weight between node 𝑖 and 𝑗
𝛿(𝑖, 𝑗) : Indicator of whether 𝑖 and 𝑗are in the same cluster
𝑘# : the degree of node 𝑖 (the sum of weights of all edges connected to 𝑖)
𝑚: the total weight in the all graph

Higher modularity implies better partition
• Modularity : −1 ≪ 𝑄 ≪ 1
• 𝑄 > 0 when # edges within groups 

> #edges within groups in a 
randomly rewired graph

• 𝑄 > 0.3 :significantly community 
structure

https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html


Louvain community detection
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https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html#ref-freytag2018comparison
https://www.youtube.com/watch?v=QNv7rKWCgM8

• Start with every node in its own community
• Step1: Modularity optimization

• Order the nodes and for each node 𝑖, move 𝑖 to the community of neighbor 𝑗
that leads to maximum ∆𝑄

• If all ∆𝑄 < 0 the 𝑖 remains in its current community
• Repeatedly cycle through all nodes until ∆𝑄 = 0

• Step2 : Community aggregation
• Create a weighted network of communities from Step1
• Nodes : communities in Step1
• Edge weights : sum of weights of edges between communities 
• Edges within a community become two self-loops 

• Repeat:  Apply Step1/ Step2 to resulting network, and so on until ∆𝑄 = 0

https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html


Cell type annotation
• The most challenging task in scRNA-seq data analysis is arguably the 

interpretation of the results. Obtaining clusters of cells is fairly straightforward, 
but it is more difficult to determine what biological state is represented by each 
of those clusters

• Various computational approaches could exploit prior biological knowledge to 
assign meaning to an uncharacterized scRNA-seq dataset could be used

https://btep.ccr.cancer.gov/wp-content/uploads/Celltype_Annotation_final.pdf
https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html
https://bioconductor.org/books/release/OSCA/cell-type-annotation.html

• Types of cell type annotation tools
•Supervised methods: require a training dataset 
labeled with the corresponding cell populations in 
order to train the classifier

•SingleR, ACTINN, CaSTle

•Prior-knowledge based methods: either a marker 
gene file is required as an input or a pretrained 
classifier for specific cell populations is provided

•DigitalCelllSorter, Moana 

Annotation

24

https://btep.ccr.cancer.gov/wp-content/uploads/Celltype_Annotation_final.pdf
https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html


Cell type annotation
SingleR : Reference-based annotation of scRNA-seq

25https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/clustering-and-cell-annotation.html

Step1: Find variable gene 
• For every gene, obtain median grouped by label
• Select genes that makes at least one label different: If we are looking for the genes that makes label “green” different 

from label “red”, we substract the second column by the first, and pick the top 𝑁 highest and positive values

Step2: Spearman’s correlation
• Spearman’s correlation ∈ [−1,1] is a measure of the 

strength of a linear or monotonic relationship between 
paired data.

• compute the Spearman’s correlation for all pairs of cells 
in the test and reference dataset, and obtain an 𝑛()*(×
𝑛+),correlation matrix, where 𝑛 is the number of cells 
(see the first matrix in Step3).

Step3 : Scoring
• We want to know how each cell in the test data is 

correlated to the labels in the reference data, instead of 
each reference cell. So we take the correlations of a cell in 
the test data with all the cells with a certain label in the 
reference data, and summarize them into one number or a 
score, in SingleR, the default is to take the 80% quantile.

Step4 : Fine tuning



Cell type annotation
SingleR : Reference-based annotation of scRNA-seq
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Aran, D., Looney, A.P., Liu, L. et 
al. Reference-based analysis of lung single-
cell sequencing reveals a transitional 
profibrotic macrophage. Nat 
Immunol 20, 163–172 (2019). 
https://doi.org/10.1038/s41590-018-0276-y

• correlated single-cell transcriptomes with reference transcriptomic data sets and 
improved its inferences iteratively

https://doi.org/10.1038/s41590-018-0276-y


Cell type markers identification
Differential expression analysis

• Non-parametric tests
• Wilcoxon rank sum test
• Student’s t-test

• Methods specific for scRNA-seq
• MAST : GLM-framework that treats cellular detection rate as a covariate (Finak

et al, Genome Biology, 2015)

• Methods for bulk RNA-seq
• DESeq2 : DE based on a model using the negative binomial distribution (Love et 

al, Genome Biology 2014)

27

• Finak, G., McDavid, A., Yajima, M. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16, 278 
(2015). https://doi.org/10.1186/s13059-015-0844-5

• Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8.
• https://satijalab.org/seurat/archive/v3.1/immune_alignment.html

https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1186/s13059-014-0550-8


Pseudo timing
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http://cole-trapnell-lab.github.io/monocle-release/docs/#constructing-single-cell-trajectories
https://scrnaseq-course.cog.sanger.ac.uk/website/biological-analysis.html#pseudotime-analysis
Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9

• Many differentiation processes taking place during development: following a stimulus, cells 
will change from one cell-type to another. We must sample at multiple time-points and 
obtain snapshots of the gene expression profiles. 

• Since some of the cells will proceed faster along the differentiation than others, each 
snapshot may contain cells at varying points along the developmental progression. 

• We use statistical methods to order the cells along one or more trajectories which represent 
the underlying developmental trajectories, this ordering is referred to as “pseudotime”

• Using single-cell -omics data, many trajectory inference (TI) methods could computationally 
order cells along trajectories, allowing the unbiased study of cellular dynamic processes

http://cole-trapnell-lab.github.io/monocle-release/docs/
https://scrnaseq-course.cog.sanger.ac.uk/website/biological-analysis.html


Pseudo timing
Practical guideline for method users

29Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9

• The performance of a method mostly depends on the topology of the trajectory, the choice of TI method will 
be primarily influenced by the user’s existing knowledge about the expected topology in the data. Methods 
to the right are ranked according to their performance on a particular (set of) trajectory type. Further to the 
right are shown the accuracy (+: scaled performance ≥ 0.9, ±: >0.6), usability scores (+:≥0.9, ± ≥0.6), 
estimated running times and required prior information. k, thousands; m, millions.



Gene regulation

30

Gene regulation is the process of controlling which genes in a cell's DNA are 
expressed (used to make a functional product such as a protein).

https://www.cs.purdue.edu/homes/ayg/TALKS/STC_CHICAGO10/Introductory_material/regulatory_networks.ppt



Gene regulatory network
• Gene regulatory networks (GRNs) are the on-off 

switches of a cell operating at the gene level
• two genes are connected if the expression of one 

gene modulates expression of another one by 
either activation or inhibition

• can be inferred from correlations in gene 
expression data, time-series gene expression 
data, and/or gene knock-out experiments

31

Observation Inference

https://www.cs.purdue.edu/homes/ayg/TALKS/STC_CHICAGO10/Introductory_material/regulatory_networks.ppt
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Cell-type 
gene regulatory networks

• cell-type-specific GRNs 
would be key tools for the 
study of cellular 
heterogeneity

• cell-type-specific GRNs 
will reveal key regulatory 
factors and circuits for 
specific cell types, 
facilitating mapping 
between disease-
associated variants and 
affected cell types

(NI)

Todorov H., Cannoodt R., Saelens W., Saeys Y. (2019) Network Inference from Single-Cell Transcriptomic Data. In: Sanguinetti G., Huynh-Thu V. (eds) Gene Regulatory Networks. Methods in Molecular Biology, vol 1883. Humana Press, New York, NY. https://doi.org/10.1007/978-
1-4939-8882-2_10



Network inference algorithms

33Todorov H., Cannoodt R., Saelens W., Saeys Y. (2019) Network Inference from Single-Cell Transcriptomic Data. In: Sanguinetti G., Huynh-Thu V. (eds) Gene Regulatory Networks. Methods in Molecular Biology, vol 1883. Humana Press, New York, NY. https://doi.org/10.1007/978-
1-4939-8882-2_10



SCENIC
single-cell regulatory network inference and clustering

34

• SCENIC is a tool to simultaneously reconstruct gene regulatory 
networks and identify stable cell states from single-cell RNA-seq data. 
The gene regulatory network is inferred based on co-expression and 
DNA motif analysis, and then the network activity is analyzed in each 
cell to identify the recurrent cellular states.

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463


Step1.TF-based co-expression network

35

SCENIC

GENIE3
or

GRNBoost

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463


Step2.Gene regulatory network

36

SCENIC

RcisTarget
cis-regulatory sequence analysis

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463


Step3.Activity of the network in each cell

37

SCENIC

AUCell
Identifying cells with active gene-sets

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463
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GRN-based cell states

Microglia

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463
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Cell-type specific master regulators

Dynamic states

Cross-species GRN comparisons

Biologically-driven dimensionality reduction

TF recovery # of TF identified

Patient Cancer subtype
Further applications

Aibar et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nature Methods. doi: 10.1038/nmeth.4463.

http://dx.doi.org/10.1038/nmeth.4463


Tools for GRN inference from 
scRNA-seq

Ground truth of GRNs is 
usually unknown. 

How do we evaluate the 
performance of existing 
GRN inference methods 
from scRNA-seq data?

BEELINE

Mark W E J Fiers, Liesbeth Minnoye, Sara Aibar, Carmen Bravo 
González-Blas, Zeynep Kalender Atak, Stein Aerts, Mapping gene 
regulatory networks from single-cell omics data, Briefings in 
Functional Genomics, Volume 17, Issue 4, July 2018, Pages 246–
254, https://doi.org/10.1093/bfgp/elx046

40

https://doi.org/10.1093/bfgp/elx046


BEELINE
Benchmarking gene regulatory network inference from 

single-cell transcriptomic data

41

• BEELINE is an evaluation framework incorporating 12 diverse GRN inference algorithms 
to assess the accuracy, robustness, and efficiency of GRN inference techniques for 
single-cell gene expression data based on well-defined benchmark datasets. 

• BoolODE is developed for  accurate simulations of Boolean models with predictable 
trajectories.

Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic 
data. Nat Methods. 2020;17(2):147-154. doi:10.1038/s41592-019-0690-6



42Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol 37, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9

Input type 1: 
Simulated datasets from synthetic networks

GRN

BoolODE

G
en

es

Cells

Linear Linear long Cycle Bifurcating

Bifurcating 
Converging Trifurcating

BoolODE
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Input type 2: 
Simulated datasets from curated models (Boolean)

• Giacomantonio CE & Goodhill GJ A boolean model of the gene regulatory network underlying mammalian cortical area development. PLoS Comput. Biol. 6, e1000936 (2010).
• Lovrics A et al. Boolean Modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord. PLoS One 9, e111430 (2014).
• Krumsiek J, Marr C, Schroeder T & Theis FJ Hierarchical Differentiation of Myeloid Progenitors Is Encoded in the Transcription Tactor Network. PLoS One 6, e22649 (2011).
• Ríos O et al. A Boolean network model of human gonadal sex determination. Theor. Biol. Med. Model. 12, 26 (2015).

mCAD

HSC VSC

GSD

• Mammalian Cortical Area Development (mCAD)1

• Ventral Spinal Cord Development (VSC)2

• Hematopoietic Stem Cell Differentiation (HSC)3

• Gonadal Sex Determination (GSD)4

mCAD

BoolODE
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Input type 3: 
Experimental scRNA-seq datasets

hepatocytes
dendritic cells

• Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, 20–31 (2016).
• Hayashi, T. et al. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nat. Commun. 9, 619 (2018).
• Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).
• Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 546, 533–538 (2017).
• Chu, L. F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol. 17, 173 (2016).

Mouse Human

hematopoietic 
stem cells

Embryonic stem cells

Embryonic stem cells
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Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic 
data. Nat Methods. 2020;17(2):147-154. doi:10.1038/s41592-019-0690-6

BEELINE summary



ATAC-seq
Assay for Transposase-Accessible Chromatin using sequencing

46

• In ATAC-Seq, genomic DNA is exposed to Tn5, a highly active transposase
• Tn5 simultaneously fragments DNA, preferentially inserts into open 

chromatin sites, and adds sequencing primers (a process known as 
tagmentation)

• The sequenced DNA identifies the open chromatin and data analysis can 
provide insight into gene regulation

https://www.illumina.com/techniques/popular-applications/epigenetics/atac-seq-chromatin-accessibility.html



Single-Cell ATAC-seq

47

• scATAC-Seq utilizes Tn5 transposase and barcoding of individual cells to 
profile chromatin accessibility at single cell resolution

• Single cells could be captured by combinatorial cell indexing strategies or 
with use of a microfluidic device 

https://www.illumina.com/techniques/popular-applications/epigenetics/atac-seq-chromatin-accessibility.html



scATAC-seq 
using 10x Genomics technology

48

Satpathy, A.T., Granja, J.M., Yost, K.E. et al. Massively parallel single-cell chromatin landscapes of human immune cell development 
and intratumoral T cell exhaustion. Nat Biotechnol 37, 925–936 (2019). https://doi.org/10.1038/s41587-019-0206-z
https://www.10xgenomics.com/videos/ef93x01cw0?autoplay=true

• Single nucleus GEMs undergo barcoding
• Each Gel Bead contains oligos with a unique 10x 

Genomics barcode 
• All accessible DNA fragments from a individual 

nucleus share a common 10x Genomics barcode

https://doi.org/10.1038/s41587-019-0206-z


scATAC-seq
Workflow for measuring single epigenomes using scATAC-seq on a 

microfluidic device

• Develop technology for single cell epigenomic
• Single-cell ATAC-seq provides an accurate measure of chromatin 

accessibility genome-wide 

49Buenrostro, J., Wu, B., Litzenburger, U. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015). https://doi.org/10.1038/nature14590



scATAC-seq + scRNA-seq

50https://malone.bioquant.uni-heidelberg.de/methods/SingleCellSeq/

• linking single-cell epigenomics and single-cell transcriptomics 



Seurat 
Integrating scATAC-seq with scRNA-seq to annotate cell types

51

Integrated PBMC scATAC-seq and scRNA-seq Annotated PBMC scATAC-seq and scRNA-seq

• a strategy to “anchor” diverse datasets together, enabling 
integrate single-cell measurements not only across scRNA-seq 
technologies, but also across different modalities 

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive Integration of Single-Cell Data. Cell. 2019 Jun 13;177(7):1888-1902.e21. 
doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6. PMID: 31178118; PMCID: PMC6687398.



scAI
single-cell aggregation and integration

52Jin, S., Zhang, L. & Nie, Q. scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles. Genome Biol 21, 25 (2020). https://doi.org/10.1186/s13059-020-1932-8

• scAI is an unsupervised approach for integrative analysis of gene 
expression and chromatin accessibility or DNA methylation profiles 
measured in the same individual cells



scAI method

• X1 (p genes in n cells)： normalized scRNA-seq data matrix
• X2 (q loci in n cells) : single-cell chromatin accessibility or DNA methylation data matrix
• W1，W2 ： the gene loading and locus loading matrices with sizes p× K and q× K (K is the rank)
• H :  the cell loading matrix with size K× n
• Z ： cell-cell similarity matrix
• R ： a binary matrix generated by a binomial distribution with a probability
• s. α, λ, γ ： regularization parameters
• ∘ ： dot multiplication

53

• ‘To deconvolute heterogeneous single cells from both transcriptomic and 
epigenomic profiles, scAI aggregates the sparse/binary epigenomic profile 
in an unsupervised manner to allow coherent fusion with transcriptomic 
profile while projecting cells into the same representation space using 
both the transcriptomic and epigenomic data’

Jin, S., Zhang, L. & Nie, Q. scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles. Genome Biol 21, 25 (2020). https://doi.org/10.1186/s13059-020-1932-8

low-dimensional representations via the matrix factorization model:



MAESTRO
Model-based Analyses of single-cell transcriptome and regulome

• a comprehensive computational workflow for integrative analysis 
of scRNA-seq and scATAC-seq data from multiple platforms.

54Wang, C., Sun, D., Huang, X. et al. Integrative analyses of single-cell transcriptome and regulome using MAESTRO. Genome Biol 21, 198 (2020). https://doi.org/10.1186/s13059-020-02116-x



MATCHER
• an approach for integrating multiple types of single cell 

measurements
• MATCHER uses manifold alignment to infer single cell multi-

omic profiles from transcriptomic and epigenetic measurements 
performed on different cells of the same type

55

Welch, J.D., Hartemink, A.J. & Prins, J.F. 
MATCHER: manifold alignment reveals 
correspondence between single cell 
transcriptome and epigenome 
dynamics. Genome Biol 18, 138 (2017). 
https://doi.org/10.1186/s13059-017-1269-0



Single cell deconvolution

56

https://projects.iq.harvar
d.edu/files/chanbioinfor
matics/files/cell_type_de
convolution.pdf

ASHG 2019 scRNAseq
HiPlex oral presentation 
https://www.youtube.com/
watch?v=YlRemO_TE3Y

Bulk
$200/sample (Novogene)

Bulk transcriptomic analyses lose 
single cell information

Single cell
$4000 ~ 10000/sample

Single cell transcriptomic 
analyses retain single cell

How to computationally figure 
out what went into the mixture?  

Pros for Bulk-seq
• Can assay entire sample at once
• Can help identify transcription changes in individual cell types
• Huge amount of data out there already
• Cheap
Cons
• Lose single cell information



Single cell deconvolution

57

• ‘a system of equations that describe the expression of each 
gene in a heterogeneous sample as a linear combination of the 
expression levels of that gene across the different cell subsets 
present in the sample, weighted by their relative cell fractions’

Finotello, F. & Trajanoski, Z. Quantifying tumorinfiltrating immune cells from transcriptomics data. Cancer Immunol. Immunother. 67, 1031–1040 (2018).



CIBERSORTx
cell-type identification by estimating relative subsets of RNA transcripts

58

Newman, A.M., Steen, C.B., Liu, C.L. et al. Determining cell type abundance 
and expression from bulk tissues with digital cytometry. Nat 
Biotechnol 37, 773–782 (2019). https://doi.org/10.1038/s41587-019-0114-2

• a machine learning method to infer cell-type-specific gene expression 
profiles without physical cell isolation



MuSiC
Multi-Subject Single Cell deconvolution

• a method that utilizes cell-type specific gene expression from single-cell 
RNA sequencing (RNA-seq) data to characterize cell type compositions 
from bulk RNA-seq data in complex tissues

59Wang, X., Park, J., Susztak, K. et al. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat Commun 10, 380 (2019). https://doi.org/10.1038/s41467-018-08023-x



BSEQ-sc
Deconvolution of Bulk Sequencing Experiments using Single Cell Data

• a bioinformatics analysis pipeline that leverages single-cell 
sequencing data to estimate cell type proportion and cell type-specific 
gene expression differences from RNA-seq data from bulk tissue 
samples

60A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure M. Baron, A. Veres, S.L. Wolock, A. L. Faust, R. Gaujoux, A. Vetere, J. Hyoje Ryu, B. K. 
Wagner, S. Shen-Orr, A. M. Klein, D. A. Melton, I. Yanai Cell Systems. 2016 Oct 26 10.1016/j.cels.2016.08.011

https://www.ncbi.nlm.nih.gov/pubmed/27667365


Comprehensive benchmarking of computational 
deconvolution of transcriptomics data

61Cobos, F. A., Alquicira-Hernandez, J., Powell, J., Mestdagh, P. & De Preter, K. 627 Comprehensive benchmarking of computational deconvolution of transcriptomics 628 data. (2020). doi:10.1101/2020.01.10.897116 



Single cell transcriptome data 
resource for human brain

~10319 cells (Lake et al., Nature Biotech, 2018)
~3000 cells (Lake et al., 
Science, 2016)

~400 cells 
(Darmanis et al., 
PNAS, 2015) ~ 900 cells (PsychENCODE)

Read-count based; e.g., Transcripts Per 
Kilobase Million (TPM) 

• 8 excitatory and 8 inhibitory adult neuronal subtypes (i.e., cell expression clusters)
• Major adult non-neuronal types: astrocytes, endothelial, microglia, 

oligodendrocytes, and oligodendrocyte progenitor (OPC), pericyte
• Developmental neuronal and non-neuronal types

~ 17,093 cells (PsychENCODE)

Molecular-count based; e.g., Unique 
molecular identifiers (UMI)

Wang, et al., Science, 2018 62
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Single cell signatures
• ~14,000 cells (Lake et al., 

Science, 2016&2018)
• ~400 cells (Darmanis et al., 

PNAS, 2015)
• ~18,000 cells (PsychENCODE)

Single cell deconvolution 
Step 1: unsupervised learning to see 
brain cell types

Non-negative matrix 
factorization (NMF)

Wang, et al., Science, 2018 63



Single cell deconvolution 
Step 2: supervised learning to 
estimate cell fractions
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Cell fractions explain cross-
population variation in human brain
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Neuronal and glial cell fraction 
changes in gender and disorders

Excitatory to 
Inhibitory 
imbalance at 
neuronal subtype 
level for ASD*

Astrocyte and Microglia increase in ASD**

* Rubenstein et al., Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain Behav. 2003
** Gandal et al., Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap, Science 2018

Wang, et al., Science, 2018 66



Cell fraction changes in Age
Somatostatin (SST)

** **

**** ** **

** ** **

** **

**** ** **

** ** **

** **

**** ** **

** ** **
MicrogliaOligodendrocy

te
Astrocyte
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Cell fraction changes in 
human brain development

Li, …, Wang, ..., Sestan, Science, 2018 68



Drop-outs in single cell UMI

69Kharchenko, P., Silberstein, L. & Scadden, D. Bayesian approach to single-cell differential expression analysis. Nat Methods 11, 740–742 (2014).

• a gene is observed at a moderate 
or high expression level in one 
cell but is not detected in another 
cell

Why do dropouts occur in single cell?

• technical artifacts
• cell type differences
• statistical sampling
• biological factors

What should we do about dropouts?

• Impute before learning
• ignore zero inflation
• preprocess/reduce dimensions

Methods

• MAGIC
• Droplet
• DrImpute
• scDoc



MAGIC
Markov affinity-based graph imputation of cells

70
van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR, Chaffer CL, Pattabiraman D, Bierie B, Mazutis L, Wolf G, Krishnaswamy S, Pe'er D. Recovering Gene Interactions from 
Single-Cell Data Using Data Diffusion. Cell. 2018 Jul 26;174(3):716-729.e27. doi: 10.1016/j.cell.2018.05.061. Epub 2018 Jun 28. PMID: 29961576; PMCID: PMC6771278.

• an algorithm for denoising high-dimensional data most commonly applied to single-
cell RNA sequencing data. MAGIC learns the manifold data, using the resultant 
graph to smooth the features and restore the structure of the data.



Resources
Tutorial
• https://github.com/hbctraining/scRNA-seq
• https://bioconductor.org/books/release/OSCA/
• http://data-science-sequencing.github.io/
• https://broadinstitute.github.io/2019_scWorkshop/
• https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-

workshop/public/index.html

Tools
• https://github.com/seandavi/awesome-single-cell

71

https://github.com/hbctraining/scRNA-seq
https://bioconductor.org/books/release/OSCA/
http://data-science-sequencing.github.io/
https://broadinstitute.github.io/2019_scWorkshop/
https://biocellgen-public.svi.edu.au/mig_2019_scrnaseq-workshop/public/index.html
https://github.com/seandavi/awesome-single-cell

