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• More machine learning applications 

• Machine learning challenges in bioinformatics

• Spatial transcriptomics

• Imaging genetics/genomics

• Artificial intelligence in drug discovery
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Outline



Training and Testing
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Libbrecht, M., Noble, W. Machine learning applications in 
genetics and genomics. Nat Rev Genet 16, 321–332 (2015). 
https://doi.org/10.1038/nrg3920



Generative vs. Discriminative models
•Generative approaches model the joint probability p(x,y) 
for generating data

•Discriminative approaches directly model p(y|x) for 
classification

https://medium.com/@jordi299/about-generative-and-
discriminative-models-d8958b67ad32



Predicting TF binding via
Generative vs. Discriminative models 
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Libbrecht, M., Noble, W. Machine learning applications in 
genetics and genomics. Nat Rev Genet 16, 321–332 (2015). 
https://doi.org/10.1038/nrg3920



Semi-supervised learning 
(e.g., gene finding)
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• Train a model
with known 
gene sequences

• Predict labels 
for many 
unknown 
sequences

• Refine the
model with
known and 
predicted 
sequences

Libbrecht, M., Noble, W. Machine learning applications 
in genetics and genomics. Nat Rev Genet 16, 321–332 
(2015). https://doi.org/10.1038/nrg3920



Data heterogeneity
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Scherer, M., Schmidt, F., Lazareva, O. et al. Machine learning for 
deciphering cell heterogeneity and gene regulation. Nat Comput
Sci 1, 183–191 (2021). https://doi.org/10.1038/s43588-021-00038-7



Missing data and imputation
• Remember Netflix Problem?

• Biological data has many missing values
– e.g., single cell dropouts
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https://krishnaswamylab.github.io/tutorial/imputation_and_netflix/



Spatial Transcriptomics
• Assessment of gene expression profiles and spatial organization 

for interrogation of complex, heterogeneous tissues 

9https://boxia2018.wixsite.com/boxia/momemts

Bulk RNA-seq

• Average gene 
expression level, 
lacks cellular or 
spatial resolution

Single cell RNA-seq

• Identify distinct cell 
types and their gene 
expression profiles 

Spatial Transcriptomics 

• Visualize gene 
expression profiles 
with tissue context

• Spatial organization 
of distinct cell types 
and their gene 
expression profiles

Functional tissue

https://www.youtube.com/watch?v=20-qNM4Ax3s



Genomics Visium platform

10https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_BR060_Inside_Visium_Spatial_Technology.pdf

• Visium Targeted Gene Expression combines crucial spatial insights 
with the ease and breadth of targeted panels

• Accelerate the understanding of human health and disease with a 
more refined picture of the biology captured on a tissue slide



Transcriptome-scale spatial gene expression in the 
human dorsolateral prefrontal cortex (DLPFC)
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• Localize spatial gene expression in the human brain at cellular resolution 
will be critical to gain further insight into disease mechanisms

Maynard, K.R., Collado-Torres, L., Weber, L.M. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex.
Nat Neurosci 24, 425–436 (2021). https://doi.org/10.1038/s41593-020-00787-0

Spatial transcriptomics in DLPFC using Visium



• Differential layer-enriched 
expression of genes associated 
with schizophrenia disorder (SCZD) 
and autism spectrum disorder 
(ASD), highlighting the clinical 
relevance of spatially defined 
expression
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• Novel cortical layer-enriched genes 

Maynard, K.R., Collado-Torres, L., Weber, L.M. et al. Transcriptome-scale spatial gene expression in the human 
dorsolateral prefrontal cortex. Nat Neurosci 24, 425–436 (2021). https://doi.org/10.1038/s41593-020-00787-0

• Extensive layer-enriched 
expression signatures and 
refined associations to 
previous laminar markers

Further applications of 
spatial gene expression



• A data-driven framework to define unsupervised clusters in spatial 
transcriptomics data, which can be applied to other tissues or brain regions in 
which morphological architecture is not as well defined as cortical laminae
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Maynard, K.R., Collado-Torres, L., Weber, L.M. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex.
Nat Neurosci 24, 425–436 (2021). https://doi.org/10.1038/s41593-020-00787-0

Further applications of spatial gene expression in DLPFC 

Supervised annotation 
of DLPFC layers

Schematic illustrating the data-driven clustering pipeline

Evaluation of clustering performance 

Expression patterns for selected 
laminar and nonlaminar genes

Comparison of 
gene-wise test 
statistics



Imaging 
genetics

• GWAS for imaging 
phenotypes
– Subcortical region 

volumes
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Genomics, Circuits, and Pathways in Clinical 
Neuropsychiatry. http://dx.doi.org/10.1016/B978-0-12-
800105-9.00007-X



UK BioBank
n = 8,428 subjects for 3,144 functional and structural brain imaging phenotypes
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Elliott, L.T., Sharp, K., Alfaro-Almagro, F. et 
al. Genome-wide association studies of brain imaging 
phenotypes in UK Biobank. Nature 562, 210–216 
(2018). https://doi.org/10.1038/s41586-018-0571-7



Linking genes to brain phenotypes

• IMAGEN cohort
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Mascarell Maričić, L., Walter, H., 
Rosenthal, A. et al. The IMAGEN 
study: a decade of imaging 
genetics in adolescents. Mol 
Psychiatry 25, 2648–2671 (2020).



Artificial Intelligence vs. 
Machine learning

• Artificial Intelligence (AI)
– Broad concept using machines to do 

human-intelligence tasks 
– Visual perception, speech recognition, etc.

• Machine learning (ML)
– An AI subarea making machines (e.g., 

computers) automatically learn how to 
finish tasks
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https://commonfund.nih.gov/bridge2ai/faqs



AI/ML in drug discovery
• Previously computer-aided drug design 

(CADD)
– Molecular structures
– Low successful rate (6.2%)

• Increasing data enables AI/ML application
– Omics
– Imaging
– Diagnosis
– Behaviors 
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Drug discovery pipeline
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Vamathevan, J., Clark, D., Czodrowski, P. et 
al. Applications of machine learning in drug discovery and 
development. Nat Rev Drug Discov 18, 463–477 (2019).



ML approaches for drug discovery
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Vamathevan, J., Clark, D., Czodrowski, 
P. et al. Applications of machine learning 
in drug discovery and development. Nat 
Rev Drug Discov 18, 463–477 (2019).



Deep learning applications in pathology
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Vamathevan, J., Clark, D., Czodrowski, 
P. et al. Applications of machine learning 
in drug discovery and development. Nat 
Rev Drug Discov 18, 463–477 (2019).



Final exam review

• Network biology
• Applied machine learning
• RNA-seq analysis
• Gene discovery
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