Introduction to Epigenetics

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2021
Daifeng Wang
daifeng.wang@wisc.edu

Goals for lecture

Key concepts

- Importance of epigenetic data for understanding transcriptional regulation
- Use of epigenetic data for predicting transcription factor binding sites

Identical DNAs but identical fates?

Chromosomes

PNAS July 26, 2005 102 (30) 10604-10609; https://doi.org/10.1073/pnas.0500398102

Defining epigenetics

- Formally: attributes that are "in addition to" genetic sequence or sequence modifications
 - "Epigenetic code" (vs. genetic code)
- Informally: experiments that reveal the context of DNA sequence
 - DNA has multiple states and modifications

Chromatin packages DNA around Histones

Importance of epigenetics

Better understand

- DNA binding and transcriptional regulation
- Differences between cell and tissue types
- Development and other important processes

PWMs are not enough

- Genome-wide motif scanning is imprecise
- Transcription factors (TFs) bind < 5% of their motif matches

Same motif matches in all cells and conditions

PWMs are not enough

- DNA looping can bring distant binding sites close to transcription start sites
- Which genes does an enhancer regulate?

Transcription

Mapping regulatory elements genome-wide

 Can do much better than motif scanning with additional data

 ChIP-seq measures binding sites for one TF at a time

Shlyueva Nature Reviews Genetics 2014

Epigenetic data suggests where some TF binds

DNase I hypersensitivity

- Regulatory proteins bind accessible DNA
- DNase I enzyme cuts open chromatin regions that are not protected by nucleosomes

Histone modifications

H3 (protein) K27 (amino acid) ac (modification)

DNA methylation

- Reversible DNA modification
- Represses gene expression

DNA methylation

Gene "switched on"

- · Active (open) chromatin
- Unmethylated cytosines (white circles)
- · Acetylated histones

Gene "switched off"

- Silent (condensed) chromatin
- Methylated cytosines (red circles)
- Deacetylated histones

3D organization of chromatin

- Algorithms to predict long range enhancer-promoter interactions
- Or measure with chromosome conformation capture (3C, Hi-C, etc.)

3D organization of chromatin

- Hi-C produces
 2D chromatin
 contact maps
- Learn domains, enhancerpromoter interactions

Next Generation Sequencing (NGS) for epigenomics

Large-scale epigenetic maps

- Epigenomes are condition-specific
- Roadmap Epigenomics Consortium and ENCODE surveyed over 100 types of cells and tissues

Genome annotation

- Combinations of epigenetic signals can predict functional state
 - ChromHMM: Hidden Markov Model
 - Segway: Dynamic Bayesian network

Genome annotation

States are more interpretable than raw data

Ernst and Kellis Nature Methods 2012

Predicting TF binding with DNase-Seq

DNase I hypersensitive sites

- Arrows indicate DNase I cleavage sites
- Obtain short reads that we map to the genome

DNase I footprints

 Distribution of mapped reads is informative of open chromatin and specific TF binding sites

Neph Nature 2012

DNase I footprints to TF binding predictions

DNase footprints suggest that some TF binds that location

We want to know which TF binds that location

- Two ideas:
 - Search for DNase footprint patterns, then match TF motifs
 - Search for motif matches in genome, then model proximal DNase-Seq reads

We'll consider this approach