Epigenetics - Predicting TF
binding with DNase-Seq and PIQ

BMI/CS 776
www.biostat.wisc.edu/omi7 76/
Spring 2021
Daifeng Wang
daifeng.wang@wisc.edu

These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by Anthony Gitter, Mark Craven, Colin Dewey and Daifeng Wang



http://creativecommons.org/licenses/by-nc/4.0/

Gaussian distribution

A random variable, x~N (u, o)

L0 | https://en.wikipedia.org/wiki/Normal distribution

« X is # of mapped reads at a position

— u is average reads, % show how reads
fluctuate from average across regions


https://en.wikipedia.org/wiki/Normal_distribution

Multivariate Gaussian distributions

* Multiple random variables
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Kernel function for covariance

» Covariance measures “similarity” of x; and x;
- k(i,j) = E[(x; — W) (x; — .Uj)]
* Replace by other kernel functions defining

covariance

— Radial Basis Function (RBF)

. —7)2
krpr(i,j) = azexp( (12112) )

» Also, mean functions u(i), u(j)




Gaussian process (GP)

* A stochastic process with mean function

u(.) and covariance function k(.,.) so that
any finite set of multi-variates [x; x, ... x,]
is from N (u, K)

- u is n-dimension vector with ith element = u(i)
- K is a symmetric matrix (n x n) and K; = k(i, j)

~GP(u(.), k(,.))

Inflnlte number of random variables, x; x, ...



(Gaussian process regression

 x(i) Is a regression function to predict # of
reads y; on position i

-y, = x(i) + ¢, where ¢, is noise ~ N (0, 5?)
e GP(0, k(.,.)) as prior for regression
function to predict a distribution of y

— Use training data S={p, y,}, p € {1,2, ... },
predict posterior distribution(y,|S,T) ~N (i, X )
from testing data T={q, vy}

i =K@ XK@, P) + o*D) 'y,
X =K § +o*1- K@ )HEKG,P) + a*D)'K(@, §)



DNase | hypersensitive sites

* Arrows indicate DNase | cleavage sites
» Obtain short reads that we map to the genome

nucleosome-free

enhancer region
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Wang PLoS ONE 2012



DNase | footprints

 Distribution of mapped reads is informative of
open chromatin and specific TF binding sites

Chr7: 135662000 MTPN/ ChIP-Seq peak

NRF1 ChlP-seq . I ..
(K562 cells) Read depth at each position
200 bp b—
DNase I-seq . ) Nucleosome free
(K562 cells) “‘open” chromatin

|
DNase | cleavage M
(per nucleotide) ne
DNase cleavage leaving

DNA sequence ACTAGTGCGCATCCGCAATGTACA Dnase | *footprint”, only
NRF1 motif C C _ consider 5' end

Neph Nature 2012

TF binding prevents




DNase | footprints to TF
binding predictions

* DNase footprints suggest that some TF binds that
location

« We want to know which TF binds that location

 Two ideas:
— Search for DNase footprint patterns, then match TF motifs

— Search for motif matches in genome, then model proximal
DNase-Seq reads

We’ll consider this approach
for TF/motif specific effects



DNase-seq Catalog of 1,331

experiment(s) | | sequence motifs P rOte i n I n te ra Cti O n
(rawreads)\ ;fknownTFs Quantificaticn (PIQ)

PIQ algorithm
* ! « Sherwood et al. Nature
AR Biotechnology 2014
(motif A)
Smooth DNase profile e Given: TF motifs and

DNase-Seq reads

lterative
refinement of
motif-specific
information

* Do: Predict binding sites of
v | each TF

L —

...GCTAAACCGTTAACGAATGCGATAG...
(motif A) Rieck and Wright Nature Biotechnology 2014 10




PIQ main idea

« With no TF binding, DNase-Seq reads come
from some background distribution

* TF binding changes read density ina TF-
specific way

Background

TF effects — I I I /

...GCTAAACCGTTAACGAATGCGATAG...
(motif A)
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PIQ main idea

« Shape of DNase peak and footprint depend on the TF

TF binding estimation

1Y Il a
pisid @
TF A TF B

Sherwood Nature Biotechnology 2014

kL _MJMMHMM

12



(Gaussian processes

« Can model and smooth sequential data
« Bayesian approach

« Jupyter notebook demonstration
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https://nbviewer.jupyter.org/urls/www.biostat.wisc.edu/bmi776/code/gaussian_process.ipynb

PlQ features

« We’'ll discuss
— Modeling the DNase-Seq background distribution
— How TF binding impacts that distribution
— Priors on TF binding
— Single experiment/strand, single factor

« We'll skip
— Modeling multiple replicates or conditions, cross-
experiment and cross-strand effects

— Expectation propagation, iteratively approximating
probability distributions

— TF hierarchy: pioneers, settlers, migrants
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Algorithm preview

|dentify candidate binding sites with PWMs

Build a probabilistic model of the DNase-Seq reads
Estimate TF binding effects

Estimate which candidate binding sites are bound
Predict pioneer, settler, and migrant TFs
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DNase-Seq background

« Each replicate is noisy, don’t want to over-
interpret this noise

— Only counting density of 5' ends of reads

 Manage two competing objectives
— Smooth some of the noise
— Don'’t destroy base pair resolution signal
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Raw Dnase-seq reads from GP

* Log-read rate per base u from a Gaussian
Process NV (i, X)

— Positions 7and j: u; and u; , X; ; = gpk(]i — j|)
— e.qg., kis correlation

 # of reads (read counts) x; at Position /
- x; ~Poisson(exp(u;))

. Estimate a background GP(u,, oo, k, £~ 1)
— Supplement C.5
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TF-specific DNase profile

* Adjust the log-read rate by a TF-specific
effect at binding sites

DNase profile Whether site

for factor / m is bound
/ \
:ull = U; +
otherwwe
DNase Iog -read
rate adjusted for Mldpomt location
binding of factor / of binding site m Window size

DNase log-read rate
at position i/ from
Gaussian process
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TF DNase profile

* DNase profiles represented as a vector for

each TF

DNase profile

/ for factor /
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Priors on TF binding

Example only, not realistic data

e o Data

 TF binding event I; should
be more likely when - e |
— motif score s; is high

— DNase counts c¢; are high
(around matched motif)

f(s) |

* |sotonic (monotonic)
regression

log(P(I; = 1)) = f(s;) + 9(c})

Sj

Wikipedia

20


https://en.wikipedia.org/wiki/Isotonic_regression

Estimate Gaussian
Process posterior

» Given background, read counts ¢; and
TF binding event J;
— Estimate Mean E[u;| ¢;] and variance

Var[u;| c;]

* Non-binding sites by expectation
propagation

» Binding sites by TF-specific effect
model

21



Estimate binding sites

* Glven posterior mean and variance E[u]
and Var[u] per base

— Estimate L,=odd ratio(Prob(bound at
j)/Prob(not bound at j)=f; + g; +logit(p;)

— p; is determined by P(counts | binding or
not, posterior u)
» Given L, s, ¢j, and update priors /& g

by Ieast -square monotone regression
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Full algorithm

Given: TF motifs and DNase-Seq reads
Do: Predict binding sites of each TF

|dentify candidate binding sites with PWMs
Fit Gaussian process parameters for background
Estimate TF binding effects [5;_;;

— using the top 10000 scoring motifs as bound sites

Iterate until parameters converge

— Estimate Gaussian process posterior with expectation propagation
— Estimate expectation of which candidate binding sites are bound
— Update monotonic regression functions for binding priors
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TF binding hierarchy

* Pioneer, settler, and migrant TFs

SIS —

!

! Pioneer
—5 % B —

{p l -
IPuoneer Settler \Migrant
—5 % - S5 —

Sherwood Nature Biotechnology 2014
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Evaluation: confusion matrix

« Compare predictions to actual ground truth
(gold standard)

Predicted
+ =

Type |l error
Actual it

Lever Nature Methods 2016
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Evaluation: ChlP-Seq gold standard

Sequence motif for factor X

Motif é
occurrence

DNase | !! !! { 5 Q Q ! !
cut count

Predicted

binding NA Bound  Unbound Bound Unbound

of X &

Actual
binding
of X by

ChiIP-seq

True True False False

positive negative positive negative
Sung Molecular Cell 2014 26



Evaluation: ROC curve

« Calculate receiver operating characteristic curve
(ROC)

* True Positive Rate(TPR) versus False Positive Rate
(FPR)

« Summarize with area under ROC curve (AUROC)

1P 1P
ITPR=——=
P  TP+FN
FP _ FP _
FPR=""= o
N FP+TN ey |
Includes true negatives o | R dooR
Reason tO prefer preCiSion-reca” for CIaSS g ch;rzelct.er;stic;/rlggia/Fille:R(e)CCel‘(/:i;V(;s.GSrjgl

imbalanced data o7


https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Evaluation: ROC curve

TPR and FPR are giif;?;‘;azte P(bound)
defined for a set of 764 0.99 -

iti icti 47 0.96 Ositive
positive predictions o 0 redictions
Need to threshold 157 0.87
continuous L3 0.83 I ¢
predictions : | 7
Rank predictions 33? 82;, predictions
ROC curve assesses 3810 0.40
all thresholds |

Calculate TPR and

FPR at all thresholds ¢
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Precision-Recall Curve

* Precision = TP/(TP+FP)

* Recall = TP/(TP+FN) = TPR
 https://www.datascienceblog.net/post/mac

hine-learning/interpreting-roc-curves-auc/

precision 4

ideal system
9

1

0

http://mlwiki.org/index.php/Precision and Recall

> recall
29


https://www.datascienceblog.net/post/machine-learning/interpreting-roc-curves-auc/
http://mlwiki.org/index.php/Precision_and_Recall

PIQ ROC curve for mouse Ctcf

 Compare predictions to ChlP-Seq

* Full PIQ model improves upon motifs or
DNase alone

1.0 —

T 0.8 -

2 0.6+ Ctcf

% 0.4 PIQ

0_02 PWM alone

g DNase HS alone

|: O B l 1 1 1 | |
Q 9

Q. Q. Q. Q. \.
False positive —p

Sherwood Nature Biotechnology 2014
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PlQ evaluation

 Compare to two standard methods
— 303 ChIP-Seq experiments in K562 cells
— Centipede, digital genomic footprinting

 Compare AUROC L9 K562 cells
~ PIQ has very high AUROC 8 < 7
— Mean 0.93 E® 097
— Corresponds to recovering - £ 0.7
median of 50% of binding = © (-
sites ©

NN N RS

PIQ AUC

Sherwood Nature Biotechnology 2014 31



DNase-Seq benchmarking

* PIQ among top methods in large scale DNase
benchmarking study

 HMM-based model HINT was top performer

o - HINT-BC 109 ,_g8
o -~ HINT-BCN
HINT 7
DNase2TF 08¢
PIQ
+ Wellington
= Boyle S
& -~ BinDNase & ,, _
- CENTIPEDE '
- FLR
- Cuellar 0.2 4
o - TC-Rank
o - PWM-Rank :
o - FS-Rank 0 - e
I I I I | | I | I |
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Gusmao Nature Methods 2016
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Downside of AUROC for
genome-wide evaluations

Almost all methods look equally
good when using full ROC curve
/ AUROC close to 1.0

- HINT-BC 1.09 = 88
- HINT-BCN
HINT 7
DNase2TF '
PIQ
« Wellington
Neph
Boyle
+ BinDNase
- CENTIPEDE
- FLR
- Cuellar
-- TC-Rank
- PWM-Rank
- FS-Rank 0-

Precision-recall curve or
truncated ROC curve
— differentiate methods

o
(0 ¢]
|

Accuracy
o
(0))

1

o
I
I

o
N
I

| I | I |

Q O O O &
< DR PR P ¥
& KL
< o\o o\o
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PIQ summary

« Smooth noisy DNase-Seq data without
imposing too much structure

 Combine DNase-Seq and motifs to predict
condition-specific binding sites

« Supports replicates and multiple related
conditions (e.g. time series)
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