RNA-Seq Analysis and Gene Discovery

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2021
Daifeng Wang
daifeng.wang@wisc.edu

Overview

- RNA-Seq technology
- The RNA-Seq quantification problem
- Generative probabilistic models and Expectation-Maximization for the quantification task
- Interpolated Markov Model
 - Finding bacterial genes

Goals for lecture

- What is RNA-Seq?
- How is RNA-Seq used to measure the abundances of RNAs within cells?
- What probabilistic models and algorithms are used for analyzing RNA-Seq?
- Finding genes

Measuring transcription the old way: microarrays

- Each spot has "probes" for a certain gene
- Probe: a DNA sequence complementary to a certain gene
- Relies on complementary hybridization
- Intensity/color of light from each spot is measurement of the number of transcripts for a certain gene in a sample
- Requires knowledge of gene sequences

Advantages of RNA-Seq over microarrays

- No reference sequence needed
 - With microarrays, limited to the probes on the chip
- Low background noise
- Large dynamic range
 - 10⁵ compared to 10² for microarrays
- High technical reproducibility
- Identify novel transcripts and splicing events

RNA-Seq technology

- Leverages rapidly advancing sequencing technology
- Transcriptome analog to whole genome shotgun sequencing
- Two key differences from genome sequencing:
 - 1. Transcripts sequenced at different levels of coverage expression levels
 - 2. Sequences already known (in many cases) coverage is measurement

A generic RNA-Seq protocol

RNA-Seq data: FASTQ format

@HWUSI-EAS1789 0001:3:2:1708:1305#0/1 CCTTCNCACTTCGTTTCCCACTTAGCGATAATTTG +HWUSI-EAS1789 0001:3:2:1708:1305#0/1 $VVULVBVYVYZZXZZ\ee[a^b][a\a[\a^^^\]$ @HWUSI-EAS1789 0001:3:2:2062:1304#0/1 TTTTTNCAGAGTTTTTTCTTGAACTGGAAATTTTT +HWUSI-EAS1789 0001:3:2:2062:1304#0/1 a__[\Bbbb`edeeefd`cc`b]bffff`ffffff @HWUSI-EAS1789 0001:3:2:3194:1303#0/1 GAACANTCCAACGCTTGGTGAATTCTGCTTCACAA +HWUSI-EAS1789 0001:3:2:3194:1303#0/1 $ZZ[[VBZZY][TWQQZ\ZS\[ZZXV__\OX\a[ZZ]]]$ @HWUSI-EAS1789 0001:3:2:3716:1304#0/1 GGAAANAAGACCCTGTTGAGCTTGACTCTAGTCTG +HWUSI-EAS1789 0001:3:2:3716:1304#0/1 aaXWYBZVTXZX_]Xdccdfbb_\`a\aY_^]LZ^ @HWUSI-EAS1789 0001:3:2:5000:1304#0/1 CCCGGNGATCCGCTGGGACAAGCAGCATATTGATA +HWUSI-EAS1789 0001:3:2:5000:1304#0/1 aaaaaBeeeeffffehhhhhhggdhhhhahhhadh

name sequence read qualities

paired-end reads

 $\begin{array}{c}
\text{read1} \\
& \leftarrow \\
\text{read2}
\end{array}$

1 Illumina HiSeq 2500 Iane

~150 million reads

Tasks with RNA-Seq data

Assembly:

- Given: RNA-Seq reads (and possibly a genome sequence)
- Do: Reconstruct full-length transcript sequences from the reads

Quantification (our focus):

- Given: RNA-Seq reads and transcript sequences
- Do: Estimate the relative abundances of transcripts ("gene expression")

Differential expression or additional downstream analyses:

- Given: RNA-Seq reads from two different samples and transcript sequences
- Do: Predict which transcripts have different abundances between two samples

RNA-Seq is a *relative* abundance measurement technology

 RNA-Seq gives you reads from the ends of a random sample of fragments in your library

RNA sample

 Without additional data this only gives information about relative abundances

cDNA fragments

 Additional information, such as levels of "spike-in" transcripts, are needed for absolute measurements reads

Issues with relative abundance measures

Gene	Sample 1 absolute abundance	Sample 1 relative abundance	Sample 2 absolute abundance	Sample 2 relative abundance
1	20	10%	20	5%
2	20	10%	20	5%
3	20	10%	20	5%
4	20	10%	20	5%
5	20	10%	20	5%
6	100	50%	300	75%

- Changes in absolute expression of high expressors is a major factor
- Normalization is required for comparing samples in these situations

The basics of quantification with RNA-Seq data

 For simplicity, suppose reads are of length one (typically they are > 35 bases)

- What relative abundances would you estimate for these genes?
- Relative abundance is relative transcript levels in the cell, not proportion of observed reads

Length dependence

Probability of a read coming from a transcript
 relative abundance × length

Length dependence

Probability of a read coming from a transcript
 relative abundance × length

$$\hat{f}_1 \propto rac{rac{100}{200}}{200} = rac{1}{400}$$

$$\hat{f}_2 \propto \frac{\frac{60}{200}}{60} = \frac{1}{200}$$

$$\hat{f}_3 \propto \frac{\frac{40}{200}}{80} = \frac{1}{400}$$

100 A

60 C

40 G

$$\hat{f}_1 = 0.25$$

$$\hat{f}_2 = 0.5$$

$$\hat{f}_3 = 0.25$$

The basics of quantification from RNA-Seq data

Basic assumption:

$$heta_i = P(ext{read from transcript } i) = Z^{-1} au_i \ell_i'$$
 expression level length (relative abundance)

 Normalization factor is the mean length of expressed transcripts

$$Z = \sum_i \tau_i \ell_i'$$

The basics of quantification from RNA-Seq data

 Estimate the probability of reads being generated from a given transcript by counting the number of reads that align to that transcript

$$\hat{\theta_i} = \frac{c_i}{N} \underbrace{\qquad \text{\# reads mapping to transcript } i}_{\text{total \# of mappable reads}}$$

Convert to expression levels by normalizing by transcript length

$$\hat{ au_i} \propto rac{\hat{ heta}_i}{\ell_i'}$$

The basics of quantification from RNA-Seq data

- Basic quantification algorithm
 - Align reads against a set of reference transcript sequences
 - Count the number of reads aligning to each transcript
 - Convert read counts into relative expression levels

Counts to expression levels

- RPKM Reads Per Kilobase per Million mapped reads $\text{RPKM for gene i} = 10^9 \times \frac{c_i}{\ell' \cdot N}$
- FPKM (fragments instead of reads, two reads per fragment, for paired end reads)
- TPM Transcripts Per Million (estimate of) TPM for isoform ${
 m i}=10^6 \times Z \times \frac{c_i}{\ell_i' N}$
- Prefer TPM to RPKM because of normalization factor
 - TPM is a technology-independent measure (simply a fraction)

What if reads do not uniquely map to transcripts?

- The approach described assumes that every read can be uniquely aligned to a single transcript
- This is generally not the case
 - Some genes have similar sequences gene families, repetitive sequences
 - Alternative splice forms of a gene share a significant fraction of sequence

Central dogma of molecular biology

Alternative splicing

Multi-mapping reads in RNA-Seq

Species	Read length	% multi-mapping reads	
Mouse	25	17%	
Mouse	75	10%	
Maize	25	52%	
Axolotl	76	23%	
Human	50	23%	

- Throwing away multi-mapping reads leads to
 - Loss of information
 - Potentially biased estimates of abundance

Distributions of alignment counts

What if reads do not uniquely map to transcripts?

Multiread: a read that could have been derived from multiple transcripts

 How would you estimate the relative abundances for these transcripts?

Some options for handling multireads

- Discard multireads, estimate based on uniquely mapping reads only
- Discard multireads, but use "unique length" of each transcript in calculations
- "Rescue" multireads by allocating (fractions of) them to the transcripts
 - Three step algorithm
 - 1. Estimate abundances based on uniquely mapping reads only
 - 2. For each multiread, divide it between the transcripts to which it maps, proportionally to their abundances estimated in the first step
 - 3. Recompute abundances based on updated counts for each transcript 25

Rescue method example - Step 1

reads

90 A

40 C

40 G

30 T

$$\hat{f}_1^{unique} = \frac{\frac{90}{200}}{\frac{90}{200} + \frac{40}{60} + \frac{40}{80}} = 0.278$$

$$\hat{f}_2^{unique} = 0.412$$

$$\hat{f}_3^{unique} = 0.309$$

Rescue method example - Step 2

reads

90 A

40 C

40 G

30 T

Step 2

$$c_1^{rescue} = 90 + 30 \times \frac{0.278}{0.278 + 0.412} = 102.1$$

$$c_2^{rescue} = 40 + 30 \times \frac{0.412}{0.278 + 0.412} = 57.9$$

$$c_3^{rescue} = 40 + 0 = 40$$

Rescue method example - Step 3

reads

90 A

40 C

40 G

30 T

$$\hat{f}_1^{rescue} = \frac{\frac{102.1}{200}}{\frac{102.1}{200} + \frac{57.9}{60} + \frac{40}{80}} = 0.258$$

$$\hat{f}_2^{rescue} = \frac{\frac{57.9}{60}}{\frac{102.1}{200} + \frac{57.9}{60} + \frac{40}{80}} = 0.488$$

$$\hat{f}_3^{rescue} = \frac{\frac{\frac{40}{80}}{\frac{102.1}{200} + \frac{57.9}{60} + \frac{40}{80}} = 0.253$$

An observation about the rescue method

- Note that at the end of the rescue algorithm, we have an updated set of abundance estimates
- These new estimates could be used to reallocate the multireads
- And then we could update our abundance estimates once again
- And repeat!
- This is the intuition behind the statistical approach to this problem

RSEM (RNA-Seq by Expectation-Maximization) - a generative probabilistic model

- Simplified view of the model (plate notation)
 - Grey observed variable
 - White latent (unobserved) variables

RSEM - a generative probabilistic model

Quantification as maximum likelihood inference

Observed data likelihood

$$P(\mathbf{r}, \ell, \mathbf{q} | \theta) = \prod_{n=1}^{N} \sum_{i=0}^{M} \theta_{i} \sum_{j=0}^{L_{i}} \sum_{k=0}^{L_{i}} \sum_{o=0}^{1} P(R_{n} = r_{n}, L_{n} = \ell_{n}, Q_{n} = q_{n}, S_{n} = j, F_{n} = k, O_{n} = o | G_{n} = i)$$

- Likelihood function is concave with respect to θ
 - Has a global maximum (or global maxima)
- Expectation-Maximization for optimization

Approximate inference with read alignments

$$P(\mathbf{r}, \ell, \mathbf{q} | \theta) = \prod_{n=1}^{N} \sum_{i=0}^{M} \theta_{i} \sum_{j=0}^{L_{i}} \sum_{k=0}^{L_{i}} \sum_{o=0}^{1} P(R_{n} = r_{n}, L_{n} = \ell_{n}, Q_{n} = q_{n}, S_{n} = j, F_{n} = k, O_{n} = o | G_{n} = i)$$

- Full likelihood computation requires O(NML²) time
 - -N (number of reads) $\sim 10^7$
 - − M (number of transcripts) ~ 10⁴
 - − L (average transcript length) ~ 10³
- Approximate by alignment

$$P(\mathbf{r}, \ell, \mathbf{q} | \theta) = \prod_{n=1}^{N} \sum_{(i,j,k,o) \in \pi_n^x} \theta_i P(R_n = r_n, L_n = \ell_n, Q_n = q_n, Z_{nijko} = 1 | G_n = i)$$

33

EM Algorithm

- Expectation-Maximization for RNA-Seq
 - E-step: Compute expected read counts given current expression levels
 - M-step: Compute expression values maximizing likelihood given expected read counts
- Rescue algorithm ≈ 1 iteration of EM

Expected read count visualization

Improved accuracy over unique and rescue

RNA-Seq and RSEM summary

- RNA-Seq is the preferred technology for transcriptome analysis in most settings
- The major challenge in analyzing RNA-Seq data: the reads are much shorter than the transcripts from which they are derived
- Tasks with RNA-Seq data thus require handling hidden information: which gene/isoform gave rise to a given read
- The Expectation-Maximization algorithm is extremely powerful in these situations

Recent developments in RNA-Seq

- Long read sequences: PacBio and Oxford Nanopore
- Single-cell RNA-Seq: <u>review</u>
 - Observe heterogeneity of cell populations
 - Model technical artifacts (e.g. artificial 0 counts)
 - Detect sub-populations
 - Predict pseudotime through dynamic processes
 - Detect gene-gene and cell-cell relationships
- Alignment-free quantification:
 - Kallisto
 - Salmon

Public sources of RNA-Seq data

- Gene Expression Omnibus (GEO): http://www.ncbi.nlm.nih.gov/geo/
 - Both microarray and sequencing data
- Sequence Read Archive (SRA): http://www.ncbi.nlm.nih.gov/sra
 - All sequencing data (not necessarily RNA-Seq)
- ArrayExpress: https://www.ebi.ac.uk/arrayexpress/
 - European version of GEO
- Homogenized data: MetaSRA, Toil, recount2, ARCHS⁴

Interpolated Markov Models for Gene Finding

Key concepts

- the gene-finding task
- the trade-off between potential predictive value and parameter uncertainty in choosing the order of a Markov model
- interpolated Markov models

The Gene Finding Task

Given: an uncharacterized DNA sequence

Do: locate the genes in the sequence, including the coordinates of individual *exons* and *introns*

Splice Signals Example

- There are significant dependencies among non-adjacent positions in donor splice signals
- Informative for inferring hidden state of HMM

Sources of Evidence for Gene Finding

- Signals: the sequence signals (e.g. splice junctions) involved in gene expression (e.g., RNA-seq reads)
- Content: statistical properties that distinguish protein-coding DNA from non-coding DNA (focus in this lecture)
- Conservation: signal and content properties that are conserved across related sequences (e.g. orthologous regions of the mouse and human genome)

Gene Finding: Search by Content

- Encoding a protein affects the statistical properties of a DNA sequence
 - some amino acids are used more frequently than others (Leu more prevalent than Trp)
 - different numbers of codons for different amino acids (Leu has 6, Trp has 1)
 - for a given amino acid, usually one codon is used more frequently than others
 - this is termed codon preference
 - these preferences vary by species

Codon Preference in E. Coli

AA	codon	/1000
Gly	GGG	1.89
Gly	GGA	0.44
Gly	GGU	52.99
Gly	GGC	34.55
Glu	GAG	15.68
Glu	GAA	57.20
Asp	GAU	21.63
Asp	GAC	43.26

Reading Frames

 A given sequence may encode a protein in any of the six reading frames

Open Reading Frames (ORFs)

- An ORF is a sequence that
 - starts with a potential start codon (e.g., ATG)
 - ends with a potential stop codon, in the same reading frame (e.g., TAG, TAA, TGA)
 - doesn't contain another stop codon in-frame
 - and is sufficiently long (say > 100 bases)

 An ORF meets the minimal requirements to be a protein-coding gene in an organism without introns

Markov Models & Reading Frames

- Consider modeling a given coding sequence
- For each "word" we evaluate, we'll want to consider its position with respect to the reading frame we're assuming

Can do this using an inhomogeneous model

Inhomogeneous Markov Model

- Homogenous Markov model: transition probability matrix does not change over time or position
- Inhomogenous Markov model: transition probability matrix depends on the time or position

Higher Order Markov Models

- Higher order models remember more "history"
 - *n*-order $P(x_i \mid x_{i-1}, x_{i-2}, ..., x_1) = P(x_i \mid x_{i-1}, ..., x_{i-n})$
- Additional history can have predictive value
- Example:
 - predict the next word in this sentence fragment"...you___" (are, give, passed, say, see, too, ...?)
 - now predict it given more history
 - "...can you"
 - "...say can you___"
 - "...oh say can you____"

YouTube

A Fifth Order Inhomogeneous Markov Model

A Fifth Order Inhomogeneous Markov Model

Selecting the Order of a Markov Model

- But the number of parameters we need to estimate grows exponentially with the order
 - for modeling DNA we need $O(4^{n+1})$ parameters for an nth order model
- The higher the order, the less reliable we can expect our parameter estimates to be
- Suppose we have 100k bases of sequence to estimate parameters of a model
 - for a 2nd order homogeneous Markov chain, we'd see each history 6250 times on average
 - for an 8th order chain, we'd see each history ~ 1.5 times on average

Interpolated Markov Models

- The IMM idea: manage this trade-off by interpolating among models of various orders
- Simple linear interpolation:

$$P_{\text{IMM}}(x_i \mid x_{i-n}, ..., x_{i-1}) = \lambda_0 P(x_i) + \lambda_1 P(x_i \mid x_{i-1})$$

• • •

$$+ \lambda_n P(x_i \mid x_{i-n},...,x_{i-1})$$

• where $\sum_{i} \lambda_{i} = 1$

Interpolated Markov Models

- We can make the weights depend on the history
 - for a given order, we may have significantly more data to estimate some words than others
- General linear interpolation

$$P_{\mathrm{IMM}}(x_i \mid x_{i-n},...,x_{i-1}) = \lambda_0 P(x_i)$$

$$+ \lambda_1(x_{i-1}) P(x_i \mid x_{i-1})$$

$$...$$

$$\lambda \text{ is a function of the given history}$$

$$+ \lambda_n(x_{i-n},...,x_{i-1}) P(x_i \mid x_{i-n},...,x_{i-1})$$

The GLIMMER System

[Salzberg et al., Nucleic Acids Research, 1998]

- System for identifying genes in bacterial genomes
- Uses 8th order, inhomogeneous, interpolated Markov models

Did people really stop developing ab initio gene predictors in like 2009?

9:40 AM - 29 Dec 2017

Titus Brown @ctitusbrown · 29 Dec 2017

Replying to @macmanes

I think so. From what I recall, bacterial gene prediction is 99% accurate/sensitive, and euk gene prediction is horrendously inaccurate so => mRNAseq and homology methods took over.

- How does GLIMMER determine the λ values?
- First, let's express the IMM probability calculation recursively

$$P_{\underline{\mathsf{IMM},n}}(x_i \mid x_{i-n},...,x_{i-1}) = \\ \lambda_n(x_{i-n},...,x_{i-1})P(x_i \mid x_{i-n},...,x_{i-1}) + \\ [1 - \lambda_n(x_{i-n},...,x_{i-1})]P_{\underline{\mathsf{IMM},n-1}}(x_i \mid x_{i-n+1},...,x_{i-1})$$

• Let $c(x_{i-n},...,x_{i-1})$ be the number of times we see the history $x_{i-n},...,x_{i-1}$ in our training set

$$\lambda_n(x_{i-n},...,x_{i-1}) = 1$$
 if $c(x_{i-n},...,x_{i-1}) > 400$

• If we haven't seen $X_{i-n},...,X_{i-1}$ more than 400 times, then compare the counts for the following:

 $\frac{n}{x_{i-n},...,x_{i-1},a}$ $x_{i-n},...,x_{i-1},c$

$$x_{i-n},...,x_{i-1},g$$

$$X_{i-n},...,X_{i-1},t$$

(n-1)th order history + base

$$X_{i-n+1},...,X_{i-1},a$$

$$X_{i-n+1},...,X_{i-1},C$$

$$x_{i-n+1},...,x_{i-1},g$$

$$X_{i-n+1},...,X_{i-1},t$$

• Use a statistical test to assess whether the distributions of x_i depend on the order

*n*th order history + base

$$X_{i-n},...,X_{i-1},a$$

$$X_{i-n},...,X_{i-1},C$$

$$x_{i-n},...,x_{i-1},g$$

$$X_{i-n},...,X_{i-1},t$$

(n-1)th order history + base

$$X_{i-n+1},...,X_{i-1},a$$

$$X_{i-n+1},...,X_{i-1},C$$

$$x_{i-n+1},...,x_{i-1},g$$

$$X_{i-n+1},...,X_{i-1},t$$

- Null hypothesis in χ^2 test: χ_i distribution is independent of order
- Define d = 1 pvalue
- If d is small we don't need the higher order history

Putting it all together

$$\lambda_{n}(x_{i-n},...,x_{i-1}) = \begin{cases} 1 & \text{if } c(x_{i-n},...,x_{i-1}) > 400 \\ d \times \frac{c(x_{i-n},...,x_{i-1})}{400} & \text{else if } d \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

where $d \in (0,1)$

- why 400?
 - "gives ~95% confidence that the sample probabilities are within ±0.05 of the true probabilities from which the sample was taken" 60

IMM Example

Suppose we have the following counts from our training set

$$\lambda_3(ACG) = 0.857 \times 100/400 = 0.214$$
 $\lambda_2(CG) = 0 \quad (d < 0.5, c(CG) < 400)$
 $\lambda_1(G) = 1 \quad (c(G) > 400)$

IMM Example (Continued)

• Now suppose we want to calculate $P_{\text{IMM},3}(T \mid ACG)$

$$\begin{split} P_{\text{IMM},1}(T \mid G) &= \lambda_1(G)P(T \mid G) + \left(1 - \lambda_1(G)\right)P_{\text{IMM},0}(T) \\ &= P(T \mid G) \\ P_{\text{IMM},2}(T \mid CG) &= \lambda_2(CG)P(T \mid CG) + \left(1 - \lambda_2(CG)\right)P_{\text{IMM},1}(T \mid G) \\ &= P(T \mid G) \\ P_{\text{IMM},3}(T \mid ACG) &= \lambda_3(ACG)P(T \mid ACG) + \left(1 - \lambda_3(ACG)\right)P_{\text{IMM},2}(T \mid CG) \\ &= 0.214 \times P(T \mid ACG) + (1 - 0.214) \times P(T \mid G) \\ &= 0.214 \times 0.2 + (1 - 0.214) \times 0.24 \end{split}$$

Gene Recognition in GLIMMER

- Essentially ORF classification
 - Train and estimate IMMs
- For each ORF
 - calculate the probability of the ORF sequence in each of the 6 possible reading frames
 - if the highest scoring frame corresponds to the reading frame of the ORF, mark the ORF as a gene
- For overlapping ORFs that look like genes
 - score overlapping region separately
 - predict only one of the ORFs as a gene

Six possible frames

Gene Recognition in GLIMMER

GLIMMER Experiment

- 8th order IMM vs. 5th order Markov model
- Trained on 1168 genes (ORFs really)
- Tested on 1717 annotated (more or less known) genes

GLIMMER Results

	TP	FN	FP & TP?
Model	Genes found	Genes missed	Additional
GLIMMER IMM	1680 (97.8%)	37	209
5th-Order Markov	1574 (91.7%)	143	104

The first column indicates how many of the 1717 annotated genes in *H.influenzae* were found by each algorithm. The 'additional genes' column shows how many extra genes, not included in the 1717 annotated entries, were called genes by each method.

- GLIMMER has greater sensitivity than the baseline
- It's not clear whether its precision/specificity is better