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SUMMARY

A formula is derived for determining the number of observations necessary to test the equality of two
survival distributions when concomitant information is incorporated. This formula should be useful in
designing clinical trials with a heterogeneous patient population. Schoenfeld (1981, Biometrika 68, 316—
319) derived the asymptotic power of a class of statistics used to test the equality of two survival
distributions. That result is extended to the case where concomitant information is available for each
individual and where the proportional-hazards model holds. The loss of efficiency caused by ignoring
concomitant variables is also computed.

1. Introduction

In the comparison of survival curves of treatment groups, the proportional-hazards regression
model (Cox, 1972) is often used to adjust for covariates such as patient age, functional status
and disease stage. It is shown that the formula for the sample size required for the comparison
of two groups with exponential curves is valid when the proportional-hazards regression
model is used to adjust for covariates. A brief tutorial on determining sample size is presented.

The hazard function evaluated at ¢ is the instantaneous probability of death at a time, ¢,
given survival up to that time. A patient’s hazard function will depend on the treatment he
or she receives as well as on the characteristics of the patient. Sometimes patients have a
decreased probability of death after they survive past the first or second year, that is, the
hazard function decreases. On the other hand, in long-term studies the hazard function
increases as age increases the probability of death.

Suppose that there are two treatments, A and B. The proportional-hazards model specifies
that the ratio of the hazard function of a patient given Treatment B to the same patient given
Treatment A will be a constant, denoted by 4, irrespective of time or the characteristics of the
patient. Thus, one parameter specifies the effect of treatment. If survival is improved more by
Treatment A than by Treatment B, A will be greater than 1. The assumption of proportional
hazards is reasonable whenever the effect of treatment is constant over time or treatment
permanently effects the disease process. If treatment has a transitory effect, then tests based
on the proportional-hazards model should not be used and the sample-size formula given
here is not valid. Tests appropriate to this situation have been given by Fleming et al. (1980).

2. Sample-Size Formula

The sample-size formula for a clinical trial can be simplified if it is expressed as the number
of deaths required rather than as the number of patients. Suppose that a one-sided test will
be performed with a significance level of « and a power of 8 when the hazard ratio is Ao. Let
21, and zg be the 1 — « and B percentiles of the normal distribution, respectively, and let Pa
and Pp be the proportion of the patients randomized to Treatments A and B, respectively.

Key words: Covariates; Logrank test; Power; Survival; Two-sample tests.
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Assume that treatment effect is tested by an appropriate test based on the partial likelihood
(Cox, 1972). Then the total number of deaths required is given by the following expression
which is derived in the Appendix:

(zp + 21-2)*/(PaPglog?ZA). )

This is the same formula as that used to calculate sample size when two homogeneous
patient groups are compared by using the F test for exponential survival (Bernstein and
Lagakos, 1978), or when the logrank test is used to compare treatments with proportional
hazards without covariates (Schoenfeld, 1981). However, this does not imply that covariate
analysis is without benefit (see §3).

The number of patients required for a study is the same whether the randomization is
stratified by covariate values or a simple randomization is used. The formula is not valid in
a study where covariates are likely to be extremely unbalanced, such as a nonrandomized
study.

2.1 Determining the Proportion of Patients that Will Die

Clinical trials have an accrual period, a, the period during which patients enter the study, and
a follow-up period, f, the period from the end of accrual until the analysis of the data. The
follow-up period substantially reduces the number of patients required in a clinical trial
because without it, little information would be provided by patients who entered the trial
near the end of the accrual period.

In a clinical trial with an accrual period, a, and a follow-up period, f, the proportion of
patients that will survive is the average of the survival curve from Time f to Time a + f,
provided that patients enter the trial at a constant rate. Thus if one has conducted a previous
trial using Treatment B and has an estimate of the survival curve Sg(¢), one can use Simpson’s
rule to approximate the proportion of patients that will die on Treatment B:

ds =1 = L{Ss(f) + 4Ss(f + .5a) + Ss(f + a)}.

The proportion that will die on Treatment A can be approximated by da = 1 — (1 — dg)"~.
Finally, the proportion dying in the trial is given by

d = Psds + Pgds.

The number of patients required for the trial is equal to the number of deaths given by (1),
divided by d.

This approximation for dy is slightly conservative in that it underestimates the proportion
of deaths on Treatment A. If the covariates divide the patient population into J groups with
frequencies Uy, Uz, ..., U; and survival curves Szi(?), ..., Sps(¢), then a better approxi-
mation would be

J
da=1- %jgl Ui{S5i(f)"* + 4Ss(f + 5a)'* + Sei(f + @)%} €3]

However, if A <2, .1 < Sg;(a + f) and S5;(f) < .9, then the error in the approximate formula
is less than .16 dz.

If the survival is exponential within each group with the same covariates, a more precise
calculation is possible. If the median survival of a subgroup on Treatment B is 7, the
proportion expected to die will be 1 — {exp(—.69f/1)} {1 — exp(—.69a/t)} /(.69a/t). Then dp
will be the average of these values weighted by the proportions of patients in each prognostic
subgroup. The median survival on Treatment A in a subgroup will be Az, and d4 can be
calculated by using the same formula.
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2.2. Using the Nomograms to Determine Sample Size

The nomograms given by Schoenfeld and Richter (1982) can be used to determine sample
size when covariates are to be included in the analysis. To use the nomograms, simply
calculate the proportion of the patients predicted to die, as in §2.1. The tick marks on the
horizontal scale of the nomogram correspond to the proportions of patients that will die in a
clinical trial. The first corresponds to 10%, the second to 20%, and so on. Therefore, mark the
percentage that will die on the horizontal scale of the proper nomogram; draw a vertical line
from this point to the graph with R = A; then draw a horizontal line from this point of
intersection to the vertical scale and read the number of patients required per arm.

3. The Power Advantages of Adjusting for Covariates

Even though the formula for sample size is the same whether covariates are adjusted for or
not, the powers of the two procedures are different. If the two treatment groups follow the
proportional-hazards regression model, then, if covariates are ignored, the ratio of the hazard
functions of the two groups will be nonproportional. This ratio will be less than A at every
value of ¢ > 0 and the power of any test without covariates will be less than that of the test
that uses covariates.

As an example, suppose that there is a binary covariate which divides the patient population
into two equal groups. Patients in Treatment Group B have a median survival of two years
in one group and of six months in the other. Survival is exponential and A = 1.5, so patients
in Group A have a median survival of three years in one group and of nine months in the
other. The ratio of the hazard functions at the start of the study will be 1.5, however by the
second year, the hazard ratio will have dropped to 1.27. In a clinical trial conducted with two
years of accrual and two years of follow-up, the logrank test will have an efficiency of 61%
when compared to a test that uses the covariate. For the calculation involved, see Schoenfeld
(1981). If the hazard ratio were not constant and if we used the optimal rank test, its efficiency
would only be 63%. Thus, the use of covariates can substantially increase power when the
proportional-hazards model holds.

4. Example

The Radiation Therapy Oncology Group is conducting a series of trials on the treatment of
primary brain cancer. The first study, completed in 1978, showed an advantage of chemo-
therapy and radiation therapy over radiation therapy alone. Subsequent studies are testing
whether the addition of a radiation sensitizer or the use of neutron radiotherapy improves
survival. In this example, it is shown how the data from the first study can be used to plan a
new study.

The new study would use chemotherapy and radiation therapy for its standard arm. A

Table 1
Prognostic subgroups in primary brain tumors
Grou Number of Median survival
P patients (months)
Age < 40, no necrosis 21 29.1
Age =< 40, necrosis 22 15.7
40 < Age < 60, no necrosis 24 26.5
40 < Age < 60, necrosis 125 9.3
Age > 60, no necrosis 5 79

Age > 60, necrosis 75 5.0
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total of 272 patients were treated with this combination in the first study. The most important
prognostic factors were age and whether the patients had necrosis in their surgical specimens.
Table 1 shows the numbers of patients in three age groups and two necrosis groups. Of the
272 patients, 43% survived past one year, 20% past two years, and 11% past three years. For
a study with an accrual period of two years and one year of additional follow-up, the
proportion of deaths is computed to be 1 — {.43 + 4 (.2) + .11} = .78. If the hazard ratio of
the old treatment to the new treatment were 1.5, approximately 1 — .22/ = 64 of the
patients on the new treatment would die. Thus, d = 4(.64 + .78) = .71. If one uses the
approximation (2), one finds d = .73. To achieve a power of 80% with a one-sided significance
level of 5%, (1.645 + .841)*/[.25 {In(1.5)}? .71] = 212 patients would be required.

If covariates were ignored in subsequent studies, the efficiency of a logrank test for
comparing treatments would only be 67%. Even if the optimal rank test were used, its
efficiency would only be 70%. Thus, the use of these covariates substantially reduces the
sample size needed to achieve adequate power.
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RESUME

Il s’agit de déterminer le nombre d’observations nécessaires pour tester I'égalité de deux distributions de
survie quand on incorpore I'information concomitante. Cette formule peut étre utile a la planification
d’essais cliniques quand la population deés patients est hétérogene. Schoenfeld (1981, Biometrika 68,
316-319) a calculé€ la puissance asymptotique d’une classe de statistiques utilisées pour tester I’égalité de
deux distributions de survie. Ce résultat est étendu au cas ol on peut connaitre I'information
concomitante pour chaque individu et dans le cas d’'un model de hasard proportionnel. On détermine
la perte d’efficacité quand on ignore les variables concomitantes.
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APPENDIX
Derivation of Sample-Size Formula for the Score Test

Since the usual tests of treatment effect, when covariates are adjusted for, are asymptotically equivalent,
I shall derive a sample-size formula for the score test. The argument follows Schoenfeld (1981).
Letj= 1, ..., nidentify the patients in the trial. For each patient assume that there is a vector y; =
(1 - - - » ¥jp) Of covariates. For convenience, relabel the treatments 0 and 1 and let x be the treatment
label. Assume that the probability that Patient j receives Treatment x is Px which is independent of y;.
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This allows stratification based on y;, as long as the proportion randomized to each treatment is the
same in each stratum. Assume that the hazard function for the jth patient is given by

Aj(t) = Ao(t)exp(ao x; + Y aiy;i),

where the summation is over the set i = 1, p, and a, = log. A.

To define the score statistic (Rao, 1973, p. 417), let D be the set of identifiers of those patients who
die, let #; be the death time for the jth patient in D, and let x; denote the patient’s treatment label.
Assume the # are distinct. Let R(z) be the set of identifiers of patients being observed at Time #; — 0.
For any function g(x, y), define

2 8(xk, YeXp(Edmyem)
kER(t))

Y exp(2amyrm)

kER(Y)

Ei{g(x, )} =

and let £, be E; with maximum likelihood estimates (assuming ao = 0) replacing the parameters {a»}.
Letting y; be the ith compound of y, we define the elements of the p X 1 vector B by

Bi=n"t 3 (B ~ EE(y)

and we define the elements of the p X p matrix M by

~

Mi=n"" % {E(yp) = EODE(w).
JjE
The score statistic can then be expressed as

"_*[ 2 {x- Ef(x)}}

-
(n‘l[ Y Ex){l - E)(x)}] -BM B)
JjED

The term B’M™'B is the effect of the estimation of a1, as, . . . , a, on the variance of x; — Ej(x).

Assume that ao is O (n"%). At the start of the trial, the distribution of vectors y wil} be the same in the
twq treatment groups. Since ao— 0, this will remain true for any time, ¢, so Ej(xy) — E;(x)E;( y:). Thus
B — 0 and the second term in the denominator of S can be ignored. The term B appears in the Taylor
expansion of E(x) about ai, az, . . ., an, which implies that

n™t ¥ {Ei(x) - Ei(x)} > 0.
JjED
Thus S can be written as

nt ¥ {x = Ej(x)}
S _ JED

;-
["‘1 EZD E;j(x){1 - EJ'(X)}]

p P
e,={ ¥ xkexp<aoxk+ ¥ amykm)} / { > CXP<aoxk+ > am)’km)}-
kER(L)) m=1 kER()) m=1

The numerator of S can be written

nt Y (- Ex}=ntY (xi—¢)+nt Y {e— E(x)}.
JED JED

JED

Define

The first term is asymptotically normal with mean 0 and variance n™' ¥, e;(1 — ¢;), where the summation
is over D (Cox, 1975; Tsiatis, 1981). Expanding the second term in a Taylor series about a; = 0, we find
that this term approaches aon™! ¥, E;(x){ 1 — E;(x)}. However, since a, — 0, both e; and E;(x) approach
P;. Thus S is asymptotically normal with unit variance and mean equal to ay(P1 P-)! times the square
root of the expected number of deaths on the trial. This yields (1).



