Start with nickel worker data.

```r
# library(survival)
# nickel <- read.table("nickel.dat", +  col.names=c("id", "icd", "exposure", "dob", "agefe", "agefml"))
# nickel$1deaths <- (nickel$icd1 %in% c(162:163)) + 1
```

compute years from start of employment

```r
# nickel$tstart <- nickel$agefe - nickel$agefml
# nickel$tfeend <- nickel$agefml - nickel$agefe
# km.exp <- survfit(Surv(tstart, tfeend, lcdeath)~I(exposure>0), data=nickel)
```

Log-log survivor function

```r
# plot(log(km.exp$surv[km.exp$event>0]), type="n")
# for(i in 1:2) with(km.exp[i], lines(log(time), log(-log(surv)), col=i))
# km.apefe <- survfit(Surv(tstart, tfeend, lcdeath)~ +
# cut(agefe, c(0,20,30,100))) +
# + data=nickel)
```

get scaled Shoenfeld residuals and plot them.

```r
# scsch.res <- residuals(cox.exp.agefe, type="sca")
# plot(as.numeric(row.names(scsch.res)), scsch.res[,1])
```

testing the proportional hazards assumption

```r
# cox.zph(cox.exp.agefe)
```

Now consider endometrial cancer data

This example shows how one can do conditional analysis of 1:M matched data

```r
# load("endo.RData")
```

conditional analysis using only first control

```r
# summary(glm(cc ~ estro−1, data=endo, family=binomial))
```

Deviance Residuals:

```
Min 1Q Median 3Q Max
−20.63 −5.15  0.59  0.92  1.38
```

Null deviance: 87.337 on 63 degrees of freedom

Residual deviance: 62.887 on 62 degrees of freedom

AIC: 64.887

Likelihood ratio test=35.4 on 1 df, p=2.76e−09

Number of Fisher Scoring iterations: 4

Now use coxph to do conditional analysis of complete data

Note that OR estimate is not too much different, and standard error
of coefficient is smaller, since we're using more data

```r
# coxph(formula = Surv(set, cc) ~ estro + strata(set), data=endo.all)
```

coef exp(coef) se(coef) z p

```
estro  2.07  7.95  0.421 4.93 8.3e−07
```

Likelihood ratio test=35.4 on 1 df, p=2.76e−09

```
```