Generalization to GLM setting: Recall that we are considering distributions of the form:

\[
f(y_i|\theta, \phi) = \exp \left(\frac{(y_i \theta_i - b(\theta_i))}{\phi} + C(y_i, \phi) \right)
\]

In order to generalize this process to the GLM setting, we need some results regarding the function \(b(\theta)\).

Since \(f(y; \theta, \phi)\) is a density (or discrete distribution function) we have that \(\int_{\Omega} f(y; \theta, \phi) \, d\mu(y) = 1\) where \(\Omega\) is the sample space (which may be discrete) and \(d\mu(y)\) is a dominating measure.

Assuming that we can interchange the order of integration and differentiation,

\[
\frac{\partial}{\partial \theta} \int_{\Omega} f(y; \theta, \phi) \, d\mu(y) = \int_{\Omega} \frac{\partial}{\partial \theta} \exp \left(\frac{y \theta - b(\theta)}{\phi} + C \right) \, d\mu(y)
\]

\[
= \int_{\Omega} \frac{y - b'(\theta)}{\phi} f(y; \theta, \phi) \, d\mu(y)
\]

\[
= 0
\]

Hence, \(\int_{\Omega} y f(y; \theta, \phi) \, d\mu(y) = \int_{\Omega} b'(\theta) f(y; \theta, \phi) \, d\mu(y)\) or, \(E[y] = b'(\theta)\)

Similarly,

\[
\frac{\partial^2}{\partial \theta^2} \int_{\Omega} f(y; \theta, \phi) \, d\mu(y) = \int_{\Omega} \frac{-b''(\theta)}{\phi} f(y; \theta, \phi) \, d\mu(y) + \int_{\Omega} \left(\frac{y - b'(\theta)}{\phi} \right)^2 f(y; \theta, \phi) \, d\mu(y) = 0
\]

Therefore, \(b''(\theta) = \frac{\text{Var}(y)}{\phi}\).

Hence, derivatives of \(l\) in the GLM setting can be expressed as functions of the mean and variance of \(y\).

Examples:

- Gaussian case: \(\theta = \mu\), and \(b(\theta) = \mu^2/2\), so \(b'(\theta) = \mu\), and \(b''(\theta) = 1 = \text{Var}(y)/\sigma^2\).

- Poisson case: \(\theta = \log \lambda\), \(b(\theta) = e^\theta = \lambda\), \(b'(\theta) = e^\theta = \lambda\) and \(b''(\theta) = e^\theta = \lambda = \text{Var}(y)\)

- Binomial case: \(\theta = \log \frac{\pi}{1 - \pi}\), \(b(\theta) = n \log(1 + e^\theta)\), \(b'(\theta) = \frac{ne^\theta}{1 + e^\theta} = \pi\) and \(b''(\theta) = \frac{ne^\theta}{1 + e^\theta} - \frac{ne^\theta e^\theta}{(1 + e^\theta)^2} = n\pi(1 - \pi)\).

- Hypergeometric case: \(\theta = \log \psi\), \(b(\theta) = \log (\sum_u K(u)e^{u\theta})\), \(b'(\theta) = \frac{\sum_u K(u) e^{u\theta} u}{\sum_u K(u) e^{u\theta}} = E[y]\) and \(b''(\theta) = \frac{\sum_u K(u) e^{u\theta} u^2}{\sum_u K(u) e^{u\theta}} - \frac{(\sum_u K(u) e^{u\theta} u)^2}{(\sum_u K(u) e^{u\theta})^2} = E[y^2] - E[y]^2 = \text{Var}(y)\)

\(^5\)In the gaussian case, \(\Omega\) is the real line and \(d\mu(y) = dy\). In the discrete case (Poisson, Binomial, etc.) we may consider \(d\mu(y) = 1\) when \(y\) is an integer, and 0 otherwise. In this case the integral is simply the sum over the discrete values of \(y\).
Now let \(x_i \) be a vector of covariates \(\beta \) be a vector of parameters. Unlike the Gaussian case, we typically don’t want to let \(E[y] = x_i^T \beta \). Instead we model a transformed mean. So, we suppose that
\[
g(\mu) = g(E[y_i|\beta]) = x_i^T \beta
\]
for some function \(g \) called the link function.

Every family has a canonical link function which is constructed so that \(\theta = x_i^T \beta \). I.e.,
\[
E[y_i|\beta]) = g^{-1}(\theta) = b'(\theta)
\]
We have the following table of canonical link functions:

<table>
<thead>
<tr>
<th>Family</th>
<th>link function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>identity</td>
</tr>
<tr>
<td>Poisson</td>
<td>log</td>
</tr>
<tr>
<td>Binomial</td>
<td>logit</td>
</tr>
</tbody>
</table>

(Note that in the hypergeometric case, we typically don’t think in terms of sample means, plus, in general the canonical link function does not have a closed form, so we don’t usually think about link functions in this case.)

The family (Gaussian, Poisson, binomial, etc.), the covariate/parameter space and the link function uniquely determines the model.

With canonical link, the log-likelihood becomes
\[
l_i = \frac{1}{\phi}(y_i x_i^T \beta - b(x_i^T \beta)) + C_i
\]
so the full log-likelihood becomes
\[
l = \frac{1}{\phi}\left(\sum y_i x_i^T \beta - \sum b(x_i^T \beta)\right) + C
\]
\[
= \frac{1}{\phi}(Y^T X \beta - \sum b(x_i^T \beta)) + C
\]

Derivative with respect to \(\beta \):
\[
\frac{\partial l}{\partial \beta} = \frac{1}{\phi}(Y^T X - \sum b'(x_i^T \beta)x_i^T)
\]
In Gaussian case, \(b'(\theta) = \theta \), so this is a linear system. Otherwise it is not, and the solution to \(\frac{\partial l}{\partial \beta} = 0 \) requires iteration.

Let \(B(\beta) = \begin{pmatrix} b'(x_1^T \beta) \\ b'(x_2^T \beta) \\ \vdots \\ b'(x_n^T \beta) \end{pmatrix} \) then \(\sum b'(x_i^T \beta)x_i^T = B^T X \) so
\[
\frac{\partial l}{\partial \beta} = \frac{1}{\phi}(Y^T X - B^T X) = \frac{1}{\phi}(Y^T - B^T)X
\]
The score vector is

\[\mathbf{U} = \left(\frac{\partial l}{\partial \beta} \right)^T = \frac{1}{\phi} (\mathbf{X}^T (\mathbf{Y} - \mathbf{B})) \]

Note that \(\mathbf{B} = E[\mathbf{Y}] \) when model is correct, so \(\mathbf{B} \) is the vector of expected values. The MLE, \(\hat{\beta} \), solves \(\mathbf{X}^T (\mathbf{Y} - \mathbf{B}) = 0 \) or \(\mathbf{X}^T \mathbf{Y} = \mathbf{X}^T \mathbf{B} \). Since \(\mathbf{X} \) is (usually) not invertible \((p < n)\) this forces linear combinations of observed values to match linear combinations of fitted values. For many models these linear combinations correspond to marginal totals. Hence, a set of fitted values satisfies the likelihood equations provided that they

1. satisfy the model

2. linear combinations of fitted values match linear combinations of observed values

Example: 2 \(\times \) 2 table, no association between exposure and disease

<table>
<thead>
<tr>
<th></th>
<th>E+</th>
<th>D+</th>
<th>E-</th>
<th>D-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(y_{11})</td>
<td>(y_{12})</td>
<td>(y_{21})</td>
<td>(y_{22})</td>
</tr>
</tbody>
</table>

\(y_{ij} \) = count in \(i,j \) cell, assume that \(y_{ij} \) is poisson with mean \(\lambda_{ij} \).

Model: \(\log \lambda_{ij} = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2j} \) (log-linear)

where \(x_{1i} = \begin{cases} 1 & \text{exposed (i=1)} \\ 0 & \text{not-exposed (i=2)} \end{cases} \) and \(x_{2j} = \begin{cases} 1 & \text{diseased (j=1)} \\ 0 & \text{non-diseased (j=2)} \end{cases} \)

(Note that \(\log \psi = \log \lambda_{11} - \log \lambda_{12} - \log \lambda_{21} + \log \lambda_{22} = 0 \))

\[\mathbf{Y} = \begin{bmatrix} y_{11} \\ y_{12} \\ y_{21} \\ y_{22} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \]

and \(\mathbf{X}^T \mathbf{Y} = \begin{bmatrix} y_{11} + y_{12} + y_{21} + y_{22} \\ y_{11} + y_{12} \\ y_{11} + y_{21} \end{bmatrix} \)

So Score equations force the correct marginal totals,

\[\frac{y_{11} + y_{12} + y_{21} + y_{22}}{y_{11} + y_{12}} = E[y_{11}] + E[y_{12}] + E[y_{21}] + E[y_{22}] = e^{\beta_0 + \beta_1 + \beta_2}, \quad \frac{y_{11} + y_{12}}{y_{11} + y_{21}} = e^{\beta_0 + \beta_1 + \beta_2} \]

The Model forces O.R. = 1, so

\[\hat{\lambda}_{ij} = \frac{(y_{1i} + y_{2j})(y_{1j} + y_{2i})}{y_{11} + y_{12} + y_{21} + y_{22}} \]

satisfies both the model and the marginal totals.

In general, \(\mathbf{X}^T (\mathbf{Y} - \mathbf{B}) = 0 \) is a set of non-linear equations. We may solve them via Newton-Raphson. \(I.e., \) compute

\[\frac{\partial \mathbf{U}}{\partial \beta} = -\frac{1}{\phi} \mathbf{X}^T \frac{\partial \mathbf{B}}{\partial \beta} \]
and $\frac{\partial B}{\partial \beta} = \text{Matrix with } i j \text{ entry:}$

$$\frac{\partial}{\partial \beta_j} b'(x_i^T \beta) = b''(x_i^T \beta)x_{ij}$$

So

$$\frac{\partial B}{\partial \beta} = \begin{pmatrix} b''(x_1^T \beta)x_{11} & b''(x_1^T \beta)x_{12} & \cdots & b''(x_1^T \beta)x_{1p} \\
 b''(x_2^T \beta)x_{21} & b''(x_2^T \beta)x_{22} & \cdots & b''(x_2^T \beta)x_{2p} \\
 \vdots & \vdots & \ddots & \vdots \\
 b''(x_n^T \beta)x_{n1} & b''(x_n^T \beta)x_{n2} & \cdots & b''(x_n^T \beta)x_{np} \end{pmatrix} = WX$$

where

$$W = \begin{pmatrix} b''(x_1^T \beta) & 0 & \cdots & 0 \\
 0 & b''(x_2^T \beta) & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & b''(x_n^T \beta) \end{pmatrix} = \frac{1}{\phi} \text{Cov}(Y)$$

So

$$\frac{\partial U}{\partial \beta} = -\frac{1}{\phi} X^T WX \quad \text{(In Gaussian Case, } W = I)$$

$E[\partial U/\partial \beta]$ is the Fisher Information Matrix. (When we use the canonical link, it does not depend on Y, so we can drop the expectation.)

Now consider the Taylor series expansion of U, around some initial value $\beta^{(0)}$

$$U(\beta) \approx U(\beta^{(0)}) + \frac{\partial U}{\partial \beta} (\beta - \beta^{(0)})$$

or,

$$\frac{1}{\phi} X^T (Y - B(\beta)) \approx \frac{1}{\phi} X^T (Y - B(\beta^{(0)})) - \frac{1}{\phi} X^T W(\beta^{(0)}) X(\beta - \beta^{(0)})$$

Since the MLE solves the LHS = 0, we solve the RHS = 0:

$$X^T(Y - B(\beta^{(0)})) = X^T W(\beta^{(0)}) X(\beta - \beta^{(0)})$$

or

$$\beta^{(1)} = \beta^{(0)} + (X^T W(\beta^{(0)}) X)^{-1} X^T (Y - B(\beta^{(0)}))$$

(In Gaussian case, $W = I$ and $B = X\beta$, so

$$\beta^{(1)} = \beta^{(0)} + (X^T X)^{-1} X^T (Y - X\beta^{(0)})$$

$$= (X^T X)^{-1} X^T Y$$
and we get the solution in one step.) Otherwise, iterate,

\[\beta^{(i+1)} = \beta^{(i)} + (X^T W(\beta^{(i)}) X)^{-1} X^T (Y - B(\beta^{(i)})) \]

until convergence is achieved.

If non-canonical link is used, \(\frac{\partial U}{\partial \beta} \) depends on \(Y \) (via \(\sum y_i \frac{\partial^2 \theta_i}{\partial \beta^2} \)). In this case, we may use \(E[\frac{\partial U}{\partial \beta}] \) (Fisher information matrix) in place of \(\frac{\partial U}{\partial \beta} \). (This is what the function \texttt{glm} in Splus does (at least in version 3), for example). This called \textit{Fisher Scoring}. Note that when the canonical link is used, Fisher Scoring is equivalent to Newton-Raphson. Alternatively, \(\hat{\beta} \) can be estimated \textit{via iteratively re-weighted least squares} (This is what SAS PROC \texttt{LOGISTIC} and the \texttt{glm} function in R do.).