Advanced Bioinformatics
Biostatistics & Medical Informatics 776
Computer Sciences 776
Spring 2002

Mark Craven
Dept. of Biostatistics & Medical Informatics
Dept. of Computer Sciences
craven@biostat.wisc.edu
www.biostat.wisc.edu/~craven/776.html

BSMI/CS 776: Bioinformatics

• Instructor: Prof. Mark Craven
 – craven@biostat.wisc.edu or
 – craven@cs.wisc.edu
• Office hours: 2:00-3:00 Tues, 2:30-3:30pm Wed,
 or by appointment
 – room 6730, Medical Sciences Center
• Course home page: www.biostat.wisc.edu/~craven/776.html
• Course mailing list: TBA
Finding My Office

Course TA

- Wei Luo
 - luo@biostat.wisc.edu
 - 6749 Medical Sciences Center
 (across the hall from my office)
 - Office hours: 3:00-4:00pm Tuesday & Thursday
Computing Resources for the Class

- UNIX workstations in Dept. of Biostatistics & Medical Informatics
 - no “lab”, must log in remotely
 - more details later
- CS department offers UNIX orientation sessions
 - 4:00pm in 1325 Computer Sciences
 - January 23, 24, 28, 29, 30

The History of this Course

1999/2000
CS838, Craven

2000/2001
CS638, Anantharaman
CS838, Craven

2001/2002
BSMI 576, Anantharaman
BSMI 776, Craven

you are here
Expected Background

- technically, BSMI/CS 576
- statistics: good if you’ve had at least one course, but not required
- molecular biology: no knowledge assumed, but an interest in learning some basic molecular biology is mandatory

Related Courses

- BSMI/CS 576
- Biochemistry 711/712, “Sequence Analysis”, taught by Prof. Ann Palmenberg
- not-for-credit evening BioModules on “Sequence Analysis”, “Genetics Computing” and “Desktop Molecular Graphics”
 www.bocklabs.wisc.edu/acp/bnmcdrop/biomodinfo.html
- CS 731, “Advanced Artificial Intelligence with Biomedical Applications”, taught by Prof. David Page
Course Emphases

- Understanding the types and sources of data available for computational biology.
- Understanding the important computational problems in molecular biology.
- Understanding the most significant & interesting algorithms.

Course Requirements

- homework assignments: ~40%
 - programming
 - computational experiments (e.g. measure the effect of varying parameter x in algorithm y)
 - some written exercises
- project: ~20%
- final exam: ~ 35%
- class participation: ~ 5%
Course Readings

- articles from the primary literature (scientific journals, etc.)

Reading Assignment

- for next week read:
 - Molecular Biology for Computer Scientists. L. Hunter
 - DOE Primer on Molecular Genetics
 - All of the above available from course web page
 - Chapter 2 (sections 2.1 to 2.5) from Durbin et al. OR Chapter 3 from Setubal & Meidanis
Student Survey

- name
- taking course for credit or sitting in
- grad/undergrad and year
- major/home department
- CS background
- biology background
- statistics background
- took 638 or 576 w/Prof. Anantharaman

What is Bioinformatics

- representation/storage/retrieval/analysis of biological data concerning
 - sequences
 - structures
 - functions
 - activity levels
 - networks of interactions
 of/among biomolecules
- sometimes used synonymously with computational biology
 or computational molecular biology
Topics to be Covered: Computational Problems in Molecular Biology

- pairwise sequence alignment
- sequence database searching
- multiple sequence alignment
- whole genome comparisons
- gene recognition
- protein structure and function prediction
- gene expression analysis
- phylogenetic tree construction
- RNA structure modeling
- biomedical text analysis

Topics to be Covered: Computer Science Issues & Algorithms

- string algorithms
- dynamic programming
- machine learning
- Markov chain models
- hidden Markov models
- stochastic context free grammars
- EM algorithms
- Gibbs sampling
- clustering
- tree algorithms
- text analysis
- and more…
What do two sequences/genomes have in common?

• string algorithms
• dynamic programming

Where are the genes in this genome?

• Markov chain models
• hidden Markov models
Can diseases be characterized by patterns of gene activity?

- clustering
- supervised machine learning

What does the protein encoded by this gene look like? What does it do?

- dynamic programming
- branch & bound
- hidden Markov models
- Tarot cards?
What other RNA sequences fold up like this?

- stochastic context
- free grammars