More on HMMs and Multiple Sequence Alignment

BMI/CS 776
www.biostat.wisc.edu/~craven/776.html
Mark Craven
craven@biostat.wisc.edu
March 2002

Announcements

• readings for the week after Spring break
 – Brown & Botstein, *Nature Genetics Supplement*
 – Eisen et al., *Proc. National Academy of Sciences*
 – and more
Multiple Sequence Alignment: Task Definition

• Given
 – a set of more than 2 sequences
 – a method for scoring an alignment
• Do:
 – determine the correspondences between the sequences
 such that the similarity score is maximized

Motivation

• characterizing a set of sequences (e.g. some class of DNA signals)
• characterizing a protein family
 – what is conserved
 – what varies
• building profiles for searching
Multiple Alignment of SH3 Domain

Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences

The Structure of a Profile HMM
The Structure of a Profile HMM

- **match states**: represent mostly conserved positions in the sequence family
- **insert states**: represent subsequences that have been inserted in some members of the family
- **delete states**: silent states representing subsequences that have been deleted in some members of the family

A Profile HMM Trained for the SH3 Domain

Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences
Model Selection for Profile HMMs

- we have assumed we are given a model of a specified length; how do we determine this length?
- heuristic approach
 - choose an initial length; learn parameters
 - if more than \(x_{\text{del}} \)% of Viterbi paths go through delete state at position \(k \), remove that position from model
 - if more than \(x_{\text{ins}} \)% go through insertions at position \(k \), add new positions to the model
 - iterate

Classifying Sequences: Three Approaches

- choose threshold on \(\text{Pr}(x) \) that allows good discrimination between “positive” cases and “negative” cases
 - depends on length of \(x \)
 - construct a “null” model; run query sequence \(x \) through both to see which results in greater \(\text{Pr}(x) \)
 - construct a set of models for disjoint families; run query sequence \(x \) through all models to see which results in highest \(\text{Pr}(x) \)
Choosing a Threshold

Figure from Krogh et al., Journal of Molecular Biology 235, 1994

Modeling Protein Domains with an HMM

- there are lots of ways we can modify the basic profile HMM architecture for particular modeling tasks – one such case is modeling protein domains
Other Methods: Scoring a Multiple Alignment

• key issue: how do we assess the quality of a multiple sequence alignment?
• usually, the assumption is made that the individual columns of an alignment are independent
• we’ll discuss two methods
 – sum of pairs (SP)
 – minimum entropy

Scoring an Alignment: Sum of Pairs

• compute the sum of the pairwise scores

\[\text{Score}(m_i) = \sum_{k<l} s(m^k_i, m^l_i) \]

\[m^k_i = \text{character of the } k\text{th sequence in the } i \text{th column} \]

\[s = \text{substitution matrix} \]
Scoring an Alignment: Minimum Entropy

- basic idea: try to minimize the entropy of each column
- another way of thinking about it: columns that can be communicated using few bits are good
- information theory tells us that an optimal code uses $-\log_2 p$ bits to encode a message of probability p

Scoring an Alignment: Minimum Entropy

- the messages in this case are the characters in a given column
- the entropy of a column is given by:

$$Score(m_i) = -\sum_a c_{ia} \log_2 p_{ia}$$

m_i = the i th column of an alignment m
c_{ia} = count of character a in column i
p_{ia} = probability of character a in column i
Dynamic Programming Approach

• can find optimal alignments using dynamic programming
• generalization of methods for pairwise alignment
 – consider n-dimension matrix for n sequences (instead of 2-dimensional matrix)
 – each matrix element represents alignment score for n
 subsequences (instead of 2 subsequences)
• given n sequences of length L
 – space complexity is

\[O(L^n) \]

Dynamic Programming Approach

• given n sequences of length L
 – time complexity is

\[O(n^2 2^n L^n) \quad \text{if we use SP} \]
\[O(n 2^n L^n) \quad \text{if column scores can be computed in } O(n) \]
Heuristic Alignment Methods

- since complexity of DP approach is exponential in the number of sequences, heuristic methods are usually used
- **progressive alignment**: construct a succession of pairwise alignments
 - CLUSTALW
 - star approach
 - etc.
- iterative refinement
 - given a multiple alignment (say from a progressive method)
 - remove a sequence, realign it to profile of other sequences
 - repeat until convergence

Star Alignment Approach

- given: \(n \) sequences to be aligned \(X_1, \ldots, X_n \)
 - pick one sequence \(X_c \) as the “center”
 - for each \(X_i \neq X_c \) determine an optimal alignment between \(X_i \) and \(X_c \)
 - aggregate pairwise alignments
- return: multiple alignment resulting from aggregate
Star Alignments: Picking the Center

- try each sequence as the center, return the best multiple alignment
- compute all pairwise alignments and select the string that maximizes:

\[\sum_{i \neq c} \text{sim}(x_i, x_j) \]

Star Alignments: Aggregating Pairwise Alignments

- “once a gap, always a gap”
- shift entire columns when incorporating gaps
Star Alignment Example

Given:

- ATGGCCATT
- ATGGCCATT
- ATCCCAATTTT
- ATCTTCTT
- ATGGCCGATT

ATGCCATT

ATGGCCATT

ATC-CAATTTT

ATGCCATT--

ATCTTCTT

ATTGCCATT

ATGGCCATT

Star Alignment Example

- merging pairwise alignments

 present pair alignment

1. ATGGCCATT ATGGCCATT
 ATGGCCATT ATGGCCATT

2. ATC-CAATTTT ATGGCCATT--
 ATGGCCATT-- ATGGCCATT--
 ATC-CAATTTT
Star Alignment Example

present pair alignment

3. ATCTTC–TT ATTGCCATT
 ATTGCCATT--
 ATGGCCATT--
 ATC–CAATTTT
 ATCTTC–TT--

4. ATTGCCGATT ATGGCC–ATT
 ATTGCC–ATT--
 ATGGCC–ATT--
 ATC–CA–ATTTT
 ATCTTC–TT--
 ATTGCCGATT--

Methods for
Multiple Sequence Alignment

<table>
<thead>
<tr>
<th>method</th>
<th>alignment types</th>
<th>search</th>
</tr>
</thead>
<tbody>
<tr>
<td>multi-dimensional dynamic programming</td>
<td>global/local</td>
<td>dynamic programming</td>
</tr>
<tr>
<td>Star</td>
<td>global</td>
<td>greedy via pairwise alignments</td>
</tr>
<tr>
<td>CLUSTALW (tree)</td>
<td>global</td>
<td>greedy via pairwise alignment</td>
</tr>
<tr>
<td>profile HMMs</td>
<td>global/local</td>
<td>Baum-Welch (EM) to learn model, Viterbi to recover alignments</td>
</tr>
<tr>
<td>EM/MEME</td>
<td>local</td>
<td>EM</td>
</tr>
</tbody>
</table>
Probabilistic vs. Other Multiple Alignment Methods

- conventional methods use uniform substitution scores & gap penalties for all regions of sequences
- an HMM can score things differently in different regions (e.g. highly conserved vs. other regions)