The Protein Folding Problem

• we know that the function of a protein is determined by its 3D shape (fold, conformation)
• can we predict the 3D shape of a protein given only its amino-acid sequence?

• in general, NO!
• but methods that give us a partial description of the 3D structure are still helpful
Protein Architecture

- proteins are polymers consisting of amino acids linked by peptide bonds
- each amino acid consists of
 - a central carbon atom
 - an amino group NH_2
 - a carboxyl group COOH
 - a side chain
- differences in side chains distinguish different amino acids

Peptide Bonds

![Diagram of peptide bond formation]

The diagram shows the formation of a peptide bond between two amino acids, highlighting the amino group, side chain, and carboxyl group.
Amino Acid Side Chains

- side chains vary in: shape, size, polarity, charge

What Determines Fold?

- in general, the amino-acid sequence of a protein determines the 3D shape of a protein [Anfinsen et al., 1950s]
- but some exceptions
 - all proteins can be denatured
 - some molecules have multiple conformations
 - some proteins get folding help from chaperones
 - prions can change the conformation of other proteins
What Determines Fold?

- what physical properties of the protein determine its fold?
 - rigidity of backbone
 - interactions among amino acids, including
 - electrostatic interactions
 - van der Waals forces
 - volume constraints
 - hydrogen, disulfide bonds
 - interactions of amino acids with water

Levels of Description

- protein structure is often described at four different scales
 - primary structure
 - secondary structure
 - tertiary structure
 - quaternary structure
- don’t confuse these with Rost’s references to structure prediction in “1D”, “2D”, and “3D”
Levels of Description

- Primary structure (amino acid sequence)
- Secondary structure (α-helix)

Levels of Description

- Tertiary structure (folded individual peptide)
- Quaternary structure (aggregation of two or more peptides)
Secondary Structure

- secondary structure refers to certain common repeating structures
- it is a “local” description of structure
- 2 common secondary structures
 - α helices
 - β strands
- a 3rd category, called coil or loop, refers to everything else

α Helices

- α carbon
- individual amino acid
- hydrogen bond
β Strands

Ribbon Diagram Showing Secondary Structures
Determining Protein Structures

- protein structures can be determined experimentally (in most cases) by
 - x-ray crystallography
 - nuclear magnetic resonance (NMR)
- but this is very expensive and time-consuming
- can we predict structures by computational means instead?

PDB Content Growth

- the 4/12/01 release of SWISS-PROT, in contrast, has entries for 94,743 protein sequences
Top Levels of CATH Taxonomy

class:
defined by secondary structure composition

architecture:
defined by overall shape of domain structure

topology (fold):
defined by overall shape and connectivity of domain structures

PDB Growth in New Folds

- old folds are shown in red, new folds in blue
Approaches to Protein Structure Prediction

- prediction in 1D
 - secondary structure
 - solvent accessibility
 - transmembrane helices
- prediction in 2D
 - inter-residue/strand contacts
- prediction in 3D
 - homology modeling
 - fold recognition (e.g. via threading)
 - *ab initio* prediction (e.g. via molecular dynamics)

Secondary Structure Prediction

- given: an amino-acid sequence
- do: predict a secondary-structure state (α, β, coil) for each residue in the sequence

KELVLALYDYQEKSREVTMKGDLTLMLM...
ccccββββccccccccccccccββββccccccβββββββ
Secondary Structure Prediction

• one common approach:
 – make prediction for a given residue by considering a window of n (typically 13-21) neighboring residues
 – learn model that performs mapping from window of residues to secondary structure state

Homology Modeling

• observation: proteins with similar sequences tend to fold into similar structures

• given: a query sequence Q, database of protein structures
• do:
 – find protein P such that
 • structure of P is known
 • P has high sequence similarity to Q
 – return P’s structure as an approximation to Q’s structure
Homology Modeling

- most pairs of proteins with similar structure are remote homologs (< 25% sequence similarity)
- homology modeling usually doesn’t work for remote homologs; most pairs of proteins with < 25% sequence identity are unrelated

```
<table>
<thead>
<tr>
<th>pairwise sequence identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
</tr>
<tr>
<td>probably</td>
</tr>
</tbody>
</table>
```

Protein Threading

- generalization of homology modeling
 - homology modeling: align sequence to sequence
 - threading: align sequence to *structure*
- key ideas
 - limited number of basic folds found in nature
 - amino acid preferences for different structural environments provides sufficient information to choose among folds
Components of a Threading Approach

- library of core fold templates
- objective function to evaluate any particular placement of a sequence in a core template
- method for searching over space of alignments between sequence and each core template
- method for choosing the best template given alignments

A Core Template

Figure from R. Lathrop et al. “Analysis and Algorithms for Protein Sequence-Structure Alignment” in Computational Methods in Molecular Biology, Salzberg et al. editors, 1998.
Objective Functions

• the objective function scores the sequence/structure compatibility between
 – sequence amino acids
 – their corresponding positions in the core template
• it takes into account factors such as
 – a.a. preferences for solvent accessibility
 – a.a. preferences for particular secondary structures
 – interactions among spatially neighboring a.a.’s

Core Template with Interactions

• small circles represent amino acid positions
• thin lines indicate interactions represented in model

Figure from R. Lathrop et al. “Analysis and Algorithms for Protein Sequence-Structure Alignment”
One Threading

- a threading can be represented as a vector \vec{t}, where each element indicates the index of the amino acid placed in the first position of each core segment

Possible Threadings

- finding the optimal alignment is NP-hard in the general case where
 - there are variable length gaps between the core segments
 - the objective function includes interactions between neighboring amino acids
A Typical Pairwise Objective Function

\[
f(\vec{t}) = \sum_{v \in V} f_{\text{vertex}}(v, \vec{t}) + \sum_{\{u,v\} \in E} f_{\text{edge}}(\{u,v\}, \vec{t}) + \sum_{\lambda \in \Lambda_i} f_{\text{loop}}(\lambda_i, \vec{t})
\]

\(\vec{t}\) a vector characterizing a threading (each element indicates sequence position that starts each segment)

\(u, v\) amino acid positions in the core template

Searching the Space of Alignments

- higher-order interactions not allowed
 - dynamic programming
- higher-order interactions allowed
 - heuristic methods
 - fast
 - might not find the optimal alignment
 - exact methods (e.g. branch & bound)
 - will find the optimal alignment
 - might take exponential time
Branch and Bound Search

initialize Q with one entry representing the set of all threadings
repeat
 $l \leftarrow$ set in Q with lowest lower bound
 if l contains only 1 threading
 return l
 else
 split l into smaller subsets
 compute lower bound for each subset
 put subsets in Q sorted by lower bound

Figure from R. Lathrop et al, “Analysis and Algorithms for Protein Sequence-Structure Alignment”
A Lower Bound

- The general objective function with pairwise interactions is:

\[
f(\vec{i}) = \sum_{i} g_1(i, t_i) + \sum_{j > i} g_2(i, j, t_i, t_j)
\]

(scores for individual segments) (scores for segment interactions)

- The lower bound used by Lathrop et al. is:

\[
\min_{i \in T} f(\vec{i}) \geq \min_{i \in T} \sum_{i} g_1(i, t_i) + g_2(i-1, i, t_{i-1}, t_i) + \min_{\text{best case interaction}} \frac{1}{|j-i|} \sum_{|j-i|>1} g_2(i, j, t_i, u_j)
\]

(interaction with preceding segment) (best case interaction with other segments)