Extracting Keyphrases to Annotate Biological Objects of Interest

Rich Maclin
Mark Craven

Steps in an Experimental Process

Objects of interest might be a gene, genes, protein, etc.

What happens next?
Someone sits down, reads the documents of interest, and tries to figure out what they have in common
Annotate: Extracting Keyphrases

Idea: automatically examine the documents of interest and summarize them with keyphrases

Keyphrases

- Could be as simple as keywords (single words, unigrams)
- As complex as whole sentences
- What makes a good keyphrase?
 - Highly indicative of biological objects of interest
 - Used (often) when describing those objects
 - Not used when describing other objects in the universe of similar objects
Annotation Notes

- Note, annotation not meant to replace other analysis, but to add to it
- Annotation makes use of the biological databases
- Leads to another task – evaluating the results of an annotation:

 What makes a good annotation?

Key Annotation Processes

- Defining universe of keyphrases
 - Which documents to use to define the universe?
 - How do we extract keyphrases from that universe?
- Ordering keyphrases
 - How do we count occurrences of the keyphrase?
 - What indicates a significant difference?
Andrade & Valencia, 1998

- *Automatic extraction of keywords from scientific text: application to the knowledge domain of protein families*
- Used to annotate protein families
 - Protein families based on PDBSELECT
 - Family proteins based on similarity
- Extracts keywords and key sentences
 - Significance tests based on frequency
 - Sentences chosen based on average significance of words in sentence

Documents for A&V

- Select proteins from PDBSELECT (<25% sequence similarity)
- Protein families from HSSP
 - Family members selected based on at least 40% sequence similarity
 - Small protein families excluded
 - Abstracts from SwissProt connections for family members
Identifying Keywords for A&V

- Hyphenated words at end of sentences connected
- Non letter/digit characters replaced with spaces
- Words consisting only of digits (numbers) removed
- Stemming – words that are the same except for one or two letters at the end considered the same (non standard stemming)

Statistics for A&V

- $F_{freq}^w = \frac{Count_w^f}{|f|}$
- $\delta_w = \frac{\sum_{f \in families} F_{freq}^w}{\#families}$ word occurs in
- $MeanF_{freq}^w = \frac{\sum_{f \in families} F_{freq}^w}{|families|}$
- $\sigma_w = \sqrt{\frac{1}{(n-1)} \sum_{f \in families} (F_{freq}^w - MeanF_{freq})^2}$
- $z_{wf} = (F_{freq}^w - MeanF_{freq}) / \sigma_w$
- $z_{sf} = (\sum_{w \in sentence s} z_{wf}^s) / |sentence s|$
Keywords extracted by AbXtract for query ataxia

<table>
<thead>
<tr>
<th>keyword</th>
<th>freq.</th>
<th>x</th>
<th>y</th>
<th>Found at</th>
</tr>
</thead>
<tbody>
<tr>
<td>disorder</td>
<td>0.37</td>
<td>12.30</td>
<td>9531.2868</td>
<td>[96255945] [96018070] [89070677] [96391788] [97288735] [96109520] [97262209] [96154672] [94141360] [91171851] [90171491] [92097023] [96254972] [90235178] [92058549] [95150036] [93233707] [93200679] [95357487] [83107389] [91169545] [95048379] [95381456] [95364073] [96202976] [98151839] [98139395] [96390593] [87164160] [89250669] [97041722] [83259005] [96404417] [94221101] [97394602] [95138623] [90316537] [97123513]</td>
</tr>
<tr>
<td>autosomal</td>
<td>0.33</td>
<td>19.02</td>
<td>9531.2868</td>
<td>[96255945] [89070677] [97288735] [97262209] [96154672] [96391788] [97288735] [97262209] [96154672] [96391788] [97288735] [97262209] [96154672] [96391788] [97288735] [97262209] [96154672] [96391788] [97288735] [97262209] [96154672] [96391788] [97288735] [97262209] [96154672] [96391788] [97288735] [97262209] [96154672] [96391788] [97288735] [97262209] [96154672] [96391788] [97288735] [97262209] [96154672] [96391788] [97288735] [97262209] [96154672] [96391788] [97288735] [97262209] [96154672] [96391788] [97288735] [97262209] [96154672] [96391788] [97288735] [97262209] [96154672] [96391788]</td>
</tr>
<tr>
<td>disease</td>
<td>0.30</td>
<td>5.29</td>
<td>9531.2868</td>
<td>[96255945] [93104606] [97288735] [95372371] [96038263] [92194830] [96254972] [91288572] [92298322] [92058549] [86061675] [93144253] [9357487] [8310389] [91169545] [96338579] [95048379] [88314587] [95213012] [82029766] [82029766] [92035738] [87239245] [96390593] [96081682] [86061678] [96377133] [94221101] [92072632]</td>
</tr>
</tbody>
</table>

generated by AbXtract (Fri Nov 21 19:36:47 GMT 1997)
Shatkay, Edwards, Wilbur, Boguski, 2000

- *Genes, Themes and Microarrays: Using Information Retrieval for Large-Scale Gene Analysis*
- Used to annotate genes
 - Set of kernel documents is selected for the genes of interest
 - Kernel documents used to select other similar documents (similarity queries)
- Extracts keyphrases (unigrams, bigrams)
 - Model based on assumption of a Bernoulli generation of documents
- Finds functional relationships among genes
 - Relationships among genes based on

<table>
<thead>
<tr>
<th>medline</th>
<th>sentence</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>90235178</td>
<td>cancer predisposition of ataxia telangiectasia heterozygotes</td>
<td>14.70</td>
</tr>
<tr>
<td>85254461</td>
<td>workshop on ataxia telangiectasia heterozygotes and cancer.</td>
<td>12.31</td>
</tr>
<tr>
<td>96154672</td>
<td>ataxia heterozygotes are moderately cancer prone</td>
<td>9.47</td>
</tr>
<tr>
<td>92298322</td>
<td>enhanced levels of radiation induced g2 phase delay in ataxia telangiectasia heterozygotes</td>
<td>8.36</td>
</tr>
<tr>
<td>86061784</td>
<td>cellular hypersensitivity to chronic gamma radiation in cultured fibroblasts from ataxia telangiectasia heterozygotes</td>
<td>7.72</td>
</tr>
<tr>
<td>96255945</td>
<td>ataxia telangiectasia is a genetic disorder with an autosomal recessive transmission</td>
<td>6.77</td>
</tr>
<tr>
<td>96154672</td>
<td>ataxia telangiectasia is an autosomal recessive disorder involving cerebellar degeneration, immunodeficiency radiation sensitivity, and cancer predisposition</td>
<td>6.69</td>
</tr>
<tr>
<td>92072632</td>
<td>patients with ataxia telangiectasia and cells derived from homozygotes and heterozygotes are unusually sensitive to ionizing radiation</td>
<td>6.62</td>
</tr>
</tbody>
</table>
Finding Documents and Terms

- **Document**: \(<d_1, d_2, ..., d_M> \) for \(M \) possible terms \(t_i \), 1 if term appears in document and 0 otherwise
- **For theme** \(T \) (documents associated with gene), presence of terms in document \(d \) based on one of three Bernoulli distributions:
 - \(p_i^T \) – \(\Pr(\text{term}_i \in d | d \in T) \)
 - \(q_i^T \) – \(\Pr(\text{term}_i \in d | d \not\in T) \)
 - \(DB_i \) – \(\Pr(\text{term}_i \in d | d \in DB) \)

 - probabilities estimated from the entire collection
- **Other key parameters**
 - \(P_d \) – prior probability document is in theme (set to 0.01)
 - \(\lambda_i \) – probability that \(DB_i \) is used to generate \(t_i \)

Similarity Queries

- Parameters \(DB_i \) and \(P_d \) are set initially, and \(p_i^T, q_i^T, \lambda_i \) found with EM:
 - Parameters are initialized using the kernel document and its comparison to the rest of the dataset
 - **E step** – determine likelihood for each document to be part of theme based on current settings
 - **M step** – find new model parameters to maximize likelihood of partitioning into on-theme/off-theme documents
- **Top documents** are selected based on their likelihood
- Best keyphrases have high values of the ratio \(p_i^T/q_i^T \)
Finding Relationships Among Genes

- Top 50 documents selected for each gene
- PubMed identifiers R are found for each document
- Identifiers that occur for only one gene are dropped from R
- For each gene g construct vector V_g, where entries are 0 when identifier is not used in g and $1/\#identifiers$ for g if identifier is used for g:

 $<v_1^g, v_2^g, ..., v_{|R|}^g>$

- Calculate cosine coefficient between each pair of genes:

 \[
 \cos(g_1, g_2) = V_{g_1} \cdot V_{g_2}
 \]
Our Current Research

- Used to annotate clusters of genes
 - What keyphrases characterize all (or some) of the members of the cluster
 - Meant to help annotate results of large scale mechanisms such as microarrays
 - Builds on previous work by Andy Pohl and Mark Craven
- Extracts keyphrases (unigrams, bigrams, trigrams)
 - Currently testing for yeast genes – documents are abstracts collected from Medline
 - Keyphrases extracted using standard text processing methods
- Simply looks for good (characteristic) keyphrases
 - Initial results are promising
Collecting the Documents

- Abstracts are collected using queries on Medline
- For each gene, query looks for
 - (1) the occurrence of the locus name of that gene (or any other accepted aliases), and
 - (2) the occurrence of the phrase "saccharomyces cerevisiae"
 - If no abstracts are found, the second condition is dropped
- For a list of 6,267 possible yeast genes, 15,885 abstracts are found for 3,193 of the genes
 - Median number of abstracts found for the 3,193 = 3
 - Average number of abstracts = 5.029
 - Highest number of abstracts is 59 (LYS1) followed by SPO11 and SLY2 at 39

Selecting the Keyphrases

- Tokens may contain letters, digits and some internal punctuation ,()'- (some unique to this domain)
 - Note that numbers may be tokens
 - Hyphenated words at the end of sentences are joined
- Stemming is done using the Porter stemmer
 - List of stemming rules (e.g., ends in "ational", change to ends in "ate")
 - We have tried three approaches to stemming: no stemming, stemming everything, and "dictionary" stemming (our current approach)
 - "dictionary" stemming – only stem words in /usr/dict/words (leave biological terms alone)
Selecting the Keyphrases (cont)

- Stop words (standard list) are eliminated
 - Stop words: a, about, above, across, after, afterwards, etc.
- Bigrams and trigrams are kept only when there is no punctuation or stop words separating the tokens
- Keyphrases that only occur once are eliminated
- Keyphrase stats:
 - 120,808 possible keyphrases (most frequent, “gene” occurs 30,691 times in 10,407 abstracts for 2,833 of the genes)
 - Total of 2,344,183 occurrences of keyphrases
 - Median frequency is 3, average frequency is 19.404
 - 32,259 unigrams, ave. freq 53.462, 67,462 bigrams, ave. freq. 7.787, 21,087 trigrams, ave. freq. 4.469
 - 44,417 keyphrases occur 2 times, 20,197 occur 3 times, etc.

Ordering the Keyphrases

- General approach: compare a count for those genes in the cluster to count for genes outside cluster
- Counts previously investigated:
 - Frequency: how often the keyphrase occurs
 - Abstracts: how many abstracts the keyphrase occurs in
 - Genes: how many genes the keyphrase occurs for
 - Frequency and Abstracts tend to favor those genes with large numbers of abstracts
 - Genes counts would equate a term occurring once for five abstracts with a term that occurs 17 times for 20 abstracts
 - Empirically, lots of low frequency terms occur for one or two genes and end up scoring high
- Note, unigrams of gene names in cluster eliminated
Normalizing Abstract Counts

- Counting abstracts would work if there were the same number of abstracts per gene
 - Combines aspects of Abstracts and Genes counts
- Idea: estimate the percentage occurrence of abstracts per gene and project this number to some number to a count (of say 20)
- Key consideration: projecting percentage for keyphrase that occurs once for a gene’s one abstract fairly when comparing it to keyphrase that occurs 18 times for another gene’s 23 abstracts?
 - Idea: use M estimate to normalize percentages based on small numbers towards the population percentage

Counting Normalized Abstracts

```plaintext
if (#abstracts_{gene} < A) 
  actual_adjusted = #abstracts_{k,g}
else
  actual_adjusted = \frac{\#abstracts_{k,g} \times (A / \#abstracts_{gene})}{#abstracts_{gene} + M}
fi

m_{estimate} = \frac{\#abstracts_{k,g} + M \times (\#abstracts_{keyphrase} / \#abstracts)}{#abstracts_{gene} + M}

estimated_{abstracts}_{k,g} = \max(actual_{adjusted}, m_{estimate})
```

M is 10, A is 20
Computing Significance Statistics

- Can use t-tests, compare mean occurrence in and out of cluster
- Also Chi Square (which we prefer)

<table>
<thead>
<tr>
<th>Count of keyphrase k in cluster</th>
<th>Count of keyphrase k outside of cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count of other keyphrases in cluster</td>
<td>Count of all other keyphrases (neither keyphrase k, nor in cluster)</td>
</tr>
</tbody>
</table>

A Cluster Query

- Cluster from Ahlquist lab:

 1. TEF1 - YPR080W : 19 abs
 2. SPP81 - YOR204W : 17 abs
 3. DCP1 - YOL149W : 17 abs
 4. MDM2 - YGL055W : 14 abs
 5. PIP1 - YER032W : 13 abs
 6. TYS1 - YGR185C : 9 abs
 7. TEF2 - YBR118W : 9 abs
 8. SDH2 - YLL041C : 8 abs
 9. GCD10 - YNL062C : 7 abs
 10. SGS1 - YMR190C : 7 abs
 11. SK11 - YGL173C : 6 abs
 12. LHP1 - YDL051W : 6 abs
 13. JIP1 - YNL078W : 5 abs
 14. MRT1 - YCR077C : 5 abs
 15. CDC33 - YOL139C : 5 abs
 16. LSM4 - YER112W : 4 abs
 17. CCA1 - YER168C : 4 abs
 18. TIF4632 - YGL049C : 3 abs
 19. RNC1 - YKR056W : 3 abs
 20. LOS1 - YKL205W : 3 abs
 21. SIZ2 - YOR156C : 2 abs
 22. PUS4 - YNL292W : 2 abs
 23. ARC1 - YGL105W : 2 abs
 24. SNU56 - YDR240C : 1 abs
 25. TIF4631 - YGR162W : 1 abs
 26. LSM7 - YNL147W : 1 abs
 27. SPB8 - YJL124C : 1 abs
 28. GCD14 - YJL125C : 1 abs
 29. LSM6 - YDR378C : 0 abs
 30. SMX4 - YLR438C-A : 0 abs
 31. SNP3 - YBL026W : 0 abs
 32. LSM5 - YER146W : 0 abs
 33. YJL109C : 0 abs
 34. YKL082C : 0 abs
Some Results

1. 561.1 decapping (17/4 : 10/9)
2. 503.1 decapping enzyme (12/2 : 2/2)
3. 393.5 mRNA decapping (9/3 : 2/2)
4. 360.6 tyrosyl-tRNA (8/2 : 1/1)
5. 309.4 tyrosyl-tRNA synthetase (7/2 : 1/1)
6. 299.3 decapping activator (8/1 : 1/1)
7. 298.8 pat1p (6/3 : 2/2)
8. 282.9 lsm protein (5/3 : 1/1)
9. 257.9 god1p (4/2 : 0/0)
10. 219.3 pat2 gene (6/2 : 1/1)
11. 213.1 lsm (5/3 : 3/3)
12. 208.8 pat1 gene (4/1 : 1/1)
13. 198.3 eif-4e (5/2 : 4/4)
14. 193.9 pl10 (5/1 : 0/0)
15. 184.3 intrins protein (7/1 : 4/1)
16. 178.2 ded1 gene (6/1 : 2/1)
17. 175.5 eif-l alpha (7/2 : 5/3)
18. 174 exonucleolytic degrad
19. 170.7 cap structure (10/5 : 23/15)
20. 165.3 eif-4f (2/2 : 0/0)
21. 163 e3-like factor (2/1 : 0/0)
22. 163 e3-like (2/1 : 0/0)
23. 161.7 membrane intrins protein (5/1 : 1/1)
24. 161.7 plasma membrane intrinsics (5/1 : 1/1)
25. 160 cap-binding (7/5 : 18/15)
26. 159.6 aminoacylation (6/2 : 7/7)
27. 159.3 delta9 (5/1 : 1/1)
28. 158 nucleotidylytransferase (3/1 : 1/1)
29. 158 tRNA nucleotidylytransferase (3/1 : 1/1)
30. 151 cap-binding protein (5/4 : 10/10)

Advantages/Disadvantages of Our Work

- **Advantages:**
 - Very little preprocessing required
 - Easy to adapt to any universe of documents
 - Seems to do well (in initial tests)
 - (Working on) providing significance values

- **Disadvantages:**
 - Simple document retrieval may miss related documents
 - Infrequent terms abound, may score high and be shown by random chance
 - Results somewhat dependent on hand-set parameters (M,A)
Future Work

- Calculating significance values
 - Permutation tests to deal with FEW
- Building online query mechanism
- More effectively eliminating terms associated with gene names
- Annotating results
 - Showing genes used in decisions
 - Recognizing when results overlap (membran intrins protein and plasma membran intrins)
 - Combining results that cluster based on the same genes
- Incorporating other online data
 - Protein to protein mapping information

Conclusions

- As the set of online documents pertaining to biological objects grows, techniques for automatically annotating become critical
- One simple technique to annotate is to search for keyphrases
- Keyphrases are based on statistics concerning the distribution of the keyphrases for the objects of interest versus the entire population
- Techniques have been introduced to annotate protein families, annotate genes, compare gene similarity, and annotate gene clusters