Neural Networks
(Part 1)

Mark Craven and David Page
Computer Sciences 760
Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts
* perceptrons
» the perceptron training rule
* linear separability
* hidden units
« multilayer neural networks
« gradient descent
» stochastic (online) gradient descent
+ activation functions
» sigmoid, hyperbolic tangent, ReLU
» objective (error, loss) functions
» squared error, cross entropy




Neural networks

* a.k.a. artificial neural networks, connectionist models

» inspired by interconnected neurons in biological systems
* simple processing units
» each unit receives a number of real-valued inputs
» each unit produces a single real-valued output

INPUT from other newrons OUTPUT to other nevrons
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Perceptrons

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]
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1 if w0+2w,.xl. >0
0= i1

0 otherwise

input units: output unit:
represent given x represents binary classification




Perceptron example
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1 if w0+2wixi>0
0= -
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0 otherwise

features, class labels are represented numerically

x=(1,0,0,1) w0+iwixi=—0.1 0=0
i=1

x=(1,0,1,1) w0+iwixi=0.2 o=1

i=1

Learning a perceptron:
the perceptron training rule

1. randomly initialize weights

2. iterate through training instances until convergence

2a. calculate the output 1 if w,+ Ewixl. >0
for the given instance 0= P

0 otherwise

2b. update each weight

Aw, = U(y - O)Xi

1 is learning rate;/
set to value << 1 W, <= w, + Aw,




Representational power of perceptrons

perceptrons can represent only linearly separable concepts

0=

n
1 if w, +Ewixl. >0
iml

0 otherwise

decision boundary given by:

I if wy+wx, +w,x, >0

WX + WX, = =W,

X1

Representational power of perceptrons

* in previous example, feature space was 2D so decision
boundary was a line

* in higher dimensions, decision boundary is a hyperplane




Some linearly separable functions
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a multilayer perceptron
can represent XOR

assume w, = 0 for all nodes




Example multilayer neural network
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output units

hidden units

input units

figure from Huang & Lippmann, N/PS 1988

input: two features from spectral analysis of a spoken sound

output: vowel sound occurring in the context “h__d”

Decision regions of a multilayer
neural network
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figure from Huang & Lippmann, N/PS 1988
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input: two features from spectral analysis of a spoken sound

output: vowel sound occurring in the context “h__d”
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Learning in multilayer networks

« work on neural nets fizzled in the 1960’s

» single layer networks had representational limitations
(linear separability)

* no effective methods for training multilayer networks

X
1
how to determine
error signal for
hidden units?
X2

» revived again with the invention of backpropagation method
[Rumelhart & McClelland, 1986; also Werbos, 1975]
» key insight: require neural network to be differentiable;
use gradient descent

Gradient descent in weight space

Given a training set D = {(x(l), y )L x™, y('”))} we can specify an

error measure that is a function of our weight vector w

E(w) = 1 E (y(d) _ O(d))2

2 deD

figure from Cho & Chow, Neurocomputing 1999

This objective function defines a surface over the model (i.e. weight) space




Gradient descent in weight space

gradient descent is an iterative process aimed at finding a minimum in
the error surface

on each iteration y
« current weights define a

point in this space Error
+ find direction in which

error surface descends

most steeply
« take a step (i.e. update

weights) in that direction

> W]
W)
Gradient descent in weight space
calculate the gradient of E: VE(w) = E, E, IE
ow, dw, ow,
take a step in the opposite direction
E
Aw = -1 VE(w) rror
oE
Aw, =-n —
i n aw,
':42‘;"1
W2 T ,// £




The sigmoid function

+ to be able to differentiate E with respect to w; , our network
must represent a continuous function

+ to do this, we can use sigmoid functions instead of
threshold functions in our hidden and output units

0.8

f(2) =

1+e72

The sigmoid function

for the case of a single-layer network

0.8

1
+ e~ (Wot+X; wix;)

| f(net) = .




Batch neural network training

given: network structure and a training set D = {(x(”, y) L (x™, y“"))}
initialize all weights in w to small random numbers
until stopping criteria met do
initialize the error E(w)=0
for each (x@, y@) in the training set
input x4 to the network and compute output 0@
increment the error E(w)=E(w) + %(y(d) - o )2

calculate the gradient

VE(w) = IE , E ﬂ}
ow, ow, aw,
update the weights
Aw = -1 VE(w)

Online vs. batch training

« Standard gradient descent (batch training): calculates
error gradient for the entire training set, before taking a
step in weight space

» Stochastic gradient descent (online training): calculates
error gradient for a single instance (or a small set of
instances, a “mini batch”), then takes a step in weight
space

— much faster convergence
— less susceptible to local minima
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Online neural network training
(stochastic gradient descent)

given: network structure and a training set p = {(x(”, ). (x™, y(m))}

initialize all weights in w to small random numbers
until stopping criteria met do
for each (x@, y@) in the training set
input x to the network and compute output 0@
calculate the error  g(y) = %(yw) —o® )2

calculate the gradient

VEw) < |PE OE . 9E
aw,  Iw, aw,
update the weights
Aw = -1 VE(w)

Other activation functions

+ the sigmoid is just one choice for an activation function
 there are others we can use including

hyperbolic tangent

2

rectified linear (ReLU)

)0 ifx<O
f(x)_{x ifx >0
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Other objective functions

« squared error is just one choice for an objective function
 there are others we can use including

Cross entropy

Ew) = ) —y@In(o®) = (1 - y@)in(1 - o®)

deD

multiclass cross entropy

# classes

E(w) =— Z Z y.(d)ln (oi(d))

i
dep =1

Convergence of gradient descent

» gradient descent will converge to a minimum in the error function

» for a multi-layer network, this may be a local minimum (i.e. there
may be a “better” solution elsewhere in weight space)

» for a single-layer network, this will be a global minimum (i.e.
gradient descent will find the “best” solution)

* Recent analysis suggests that local minima are probably rare in
high dimensions; saddle points are more of a challenge
[Dauphin et al., NIPS 2014]
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