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Neural Networks
(Part 2)

Mark Craven and David Page
Computer Sciences 760

Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed 
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture
you should understand the following concepts

• gradient descent with a linear output unit + squared error
• gradient descent with a sigmoid output unit + cross entropy
• backpropagation
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Taking derivatives in neural nets

y = f (u)
u = g(x)
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recall the chain rule from calculus

∂E
∂wi

 =  ∂E
∂o

∂o
∂net

∂net
∂wi

we’ll make use of this as follows

net = w0 + wi
i=1

n

∑ xi

Gradient descent: simple case #1
Consider a simple case of a network with one linear output unit 
and no hidden units:

o(d ) = net (d ) = w0 + wi
i=1

n

∑ x(d )i
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let’s learn wi’s that minimize squared error
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Gradient descent: simple case #1

∂E (d )

∂wi

 =  ∂E
(d )

∂o(d )
∂o(d )

∂net (d )
∂net (d )

∂wi

let’s focus on the online case (stochastic gradient descent):

∂E (d )

∂o(d )  =  − y(d ) −o(d )( )

∂net (d )

∂wi

 =  xi
(d )

∂o(d )

∂net (d )  =  1 (linear output unit)

𝜕𝐸($)

𝜕𝑤'
= 𝑜($) − 𝑦($) 𝑥'

($)

Gradient descent: simple case #2
Now let’s consider the case in which we have a sigmoid output 
unit, no hidden units, and cross-entropy objective function:

net (d ) = w0 + wi
i=1

n

∑ x(d )i
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o(d ) = 1
1+ e−net

(d )

∂o(d )

∂net (d )
= o(d )(1− o(d ) )

useful property:

𝐸 𝒘 = .−𝑦 $ ln 𝑜($) 	− 1 − 𝑦 $ ln 1 − 𝑜($)
�

$∈5
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Gradient descent: simple case #2

∂E (d )

∂wi

 =  ∂E
(d )
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∂net (d )  =  o(d ) 1−o(d )( )

∂net (d )

∂wi

 =  xi
(d )

𝜕𝐸($)

𝜕𝑜($)
=

𝑜($) − 𝑦($)

𝑜($) 1 − 𝑜($)

𝜕𝐸($)

𝜕𝑤'
= 𝑜($) − 𝑦($) 𝑥'
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Backpropagation

∂E
∂wi

• now we’ve covered how to do gradient descent for single-layer 
networks

• how can we calculate           for every weight in a multilayer network?

è backpropagate errors from the output units to the hidden units
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Backpropagation notation
let’s consider the online case, but drop the (d) superscripts for simplicity

we’ll use 
• subscripts on y, o, net  to indicate which unit they refer to
• subscripts to indicate the unit a weight emanates from and goes to

wjii

j oj

Backpropagation

=η  δ j  oi

each weight is changed by Δwji = −η  ∂E
∂wji

= −η  ∂E
∂net j

∂net j
∂wji

δ j = −
∂E
∂net j

where this term is xi if i is
an input unit
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Backpropagation

Δwji =η  δ j  oi

δ j = −
∂E
∂net j

δ j = oj (1−oj ) δkwkj
k
∑

each weight is changed by

where

if j is an output unit

if j is a hidden unit

same as
single-layer net

𝛿7 = 𝑦7 − 𝑜7

suppose we’re using sigmoids and cross-entropy

Backpropagation illustrated

j

1. calculate error of output units

j

2. calculate error for hidden units

δ j = oj (1− oj ) δ kwkj
k
∑𝛿7 = 𝑦7 − 𝑜7
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Backpropagation illustrated

j

4. determine updates for  
weights to hidden units using 
hidden-unit errors 
Δwji =η  δ j  oi

3. determine updates for 
weights going to output units
Δwji =η  δ j  oi

Backpropagation

• particular derivatives depend on objective and activation functions

• here we show derivatives for squared error and sigmoid functions

• gradient descent and backprop generalize to other cases in which 

these functions are differentiable


