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Some of the slides in these lectures have been adapted/borrowed from materials developed
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts
» gradient descent with a linear output unit + squared error
» gradient descent with a sigmoid output unit + cross entropy
* backpropagation




Taking derivatives in neural nets

recall the chain rule from calculus

y=f(u)
u=g(x)

we’ll make use of this as follows
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Gradient descent: simple case #1

Consider a simple case of a network with one linear output unit
and no hidden units:
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Gradient descent: simple case #1

let’s focus on the online case (stochastic gradient descent):
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Gradient descent: simple case #2

Now let’s consider the case in which we have a sigmoid output
unit, no hidden units, and cross-entropy objective function:
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useful property:
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Gradient descent: simple case #2
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Backpropagation

now we’ve covered how to do gradient descent for single-layer
networks

oE
how can we calculate T for every weight in a multilayer network?
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=> backpropagate errors from the output units to the hidden units




Backpropagation notation
let’s consider the online case, but drop the @ superscripts for simplicity

we'll use
» subscripts on y, o, net to indicate which unit they refer to
» subscripts to indicate the unit a weight emanates from and goes to
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Backpropagation

each weight is changed by Aw, =19, o,
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anetj
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suppose we're using sigmoids and cross-entropy

0, =y, —o0; if j is an output unit same as
j = YiT 9 / . } single-layer net
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Backpropagation illustrated

1. calculate error of output units 2. calculate error for hidden units
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Backpropagation illustrated

4. determine updates for
weights to hidden units using
hidden-unit errors

3. determine updates for
weights going to output units
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Backpropagation

» particular derivatives depend on objective and activation functions
* here we show derivatives for squared error and sigmoid functions

+ gradient descent and backprop generalize to other cases in which

these functions are differentiable




