
1

Neural Networks
(Part 2)

Mark Craven and David Page
Computer Sciences 760

Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture
you should understand the following concepts

• gradient descent with a linear output unit + squared error
• gradient descent with a sigmoid output unit + cross entropy
• backpropagation

2

Taking derivatives in neural nets

y = f (u)
u = g(x)

∂y
∂x

=
∂y
∂u

∂u
∂x

recall the chain rule from calculus

∂E
∂wi

 = ∂E
∂o

∂o
∂net

∂net
∂wi

we’ll make use of this as follows

net = w0 + wi
i=1

n

∑ xi

Gradient descent: simple case #1
Consider a simple case of a network with one linear output unit
and no hidden units:

o(d) = net (d) = w0 + wi
i=1

n

∑ x(d)i

E(w) = 1
2

y(d) −o(d)()
2

d∈D
∑

let’s learn wi’s that minimize squared error

∂E
∂wi

=
∂
∂wi

1
2

y(d) −o(d)()
2

d∈D
∑

batch case

∂E (d)

∂wi

=
∂
∂wi

1
2
y(d) − o(d)()2

online case

x1

x2

xn

w1

w2

wn

w01

3

Gradient descent: simple case #1

∂E (d)

∂wi

 = ∂E
(d)

∂o(d)
∂o(d)

∂net (d)
∂net (d)

∂wi

let’s focus on the online case (stochastic gradient descent):

∂E (d)

∂o(d) = − y(d) −o(d)()

∂net (d)

∂wi

 = xi
(d)

∂o(d)

∂net (d) = 1 (linear output unit)

𝜕𝐸($)

𝜕𝑤'
= 𝑜($) − 𝑦($) 𝑥'

($)

Gradient descent: simple case #2
Now let’s consider the case in which we have a sigmoid output
unit, no hidden units, and cross-entropy objective function:

net (d) = w0 + wi
i=1

n

∑ x(d)i

x1

x2

xn

w1

w2

wn

w01

o(d) = 1
1+ e−net

(d)

∂o(d)

∂net (d)
= o(d)(1− o(d))

useful property:

𝐸 𝒘 = .−𝑦 $ ln 𝑜($) 	− 1 − 𝑦 $ ln 1 − 𝑜($)
�

$∈5

4

Gradient descent: simple case #2

∂E (d)

∂wi

 = ∂E
(d)

∂o(d)
∂o(d)

∂net (d)
∂net (d)

∂wi

∂o(d)

∂net (d) = o(d) 1−o(d)()

∂net (d)

∂wi

 = xi
(d)

𝜕𝐸($)

𝜕𝑜($)
=

𝑜($) − 𝑦($)

𝑜($) 1 − 𝑜($)

𝜕𝐸($)

𝜕𝑤'
= 𝑜($) − 𝑦($) 𝑥'

($)

Backpropagation

∂E
∂wi

• now we’ve covered how to do gradient descent for single-layer
networks

• how can we calculate for every weight in a multilayer network?

è backpropagate errors from the output units to the hidden units

5

Backpropagation notation
let’s consider the online case, but drop the (d) superscripts for simplicity

we’ll use
• subscripts on y, o, net to indicate which unit they refer to
• subscripts to indicate the unit a weight emanates from and goes to

wjii

j oj

Backpropagation

=η δ j oi

each weight is changed by Δwji = −η ∂E
∂wji

= −η ∂E
∂net j

∂net j
∂wji

δ j = −
∂E
∂net j

where this term is xi if i is
an input unit

6

Backpropagation

Δwji =η δ j oi

δ j = −
∂E
∂net j

δ j = oj (1−oj) δkwkj
k
∑

each weight is changed by

where

if j is an output unit

if j is a hidden unit

same as
single-layer net

𝛿7 = 𝑦7 − 𝑜7

suppose we’re using sigmoids and cross-entropy

Backpropagation illustrated

j

1. calculate error of output units

j

2. calculate error for hidden units

δ j = oj (1− oj) δ kwkj
k
∑𝛿7 = 𝑦7 − 𝑜7

7

Backpropagation illustrated

j

4. determine updates for
weights to hidden units using
hidden-unit errors
Δwji =η δ j oi

3. determine updates for
weights going to output units
Δwji =η δ j oi

Backpropagation

• particular derivatives depend on objective and activation functions

• here we show derivatives for squared error and sigmoid functions

• gradient descent and backprop generalize to other cases in which

these functions are differentiable

