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Learning Bayesian Networks
(part 1)

Mark Craven and David Page
Computer Scices 760

Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed 
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture
you should understand the following concepts

• the Bayesian network representation
• inference by enumeration
• the parameter learning task for Bayes nets
• the structure learning task for Bayes nets
• maximum likelihood estimation
• Laplace estimates
• m-estimates
• missing data in machine learning

• hidden variables
• missing at random
• missing systematically

• the EM approach to imputing missing values in Bayes net 
parameter learning
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Bayesian network example

• Consider the following 5 binary random variables:
B = a burglary occurs at your house
E = an earthquake occurs at your house
A = the alarm goes off
J = John calls to report the alarm
M = Mary calls to report the alarm

• Suppose we want to answer queries like what is       
P(B | M, J) ? 

Bayesian network example

Burglary Earthquake

Alarm

JohnCalls MaryCalls

B E t f

t t 0.95 0.05

t f 0.94 0.06

f t 0.29 0.71

f f 0.001 0.999

P ( A | B, E )

t f

0.001 0.999

P ( B )
t f

0.001 0.999

P ( E )

A t f

t 0.9 0.1

f 0.05 0.95

P ( J | A)
A t f

t 0.7 0.3

f 0.01 0.99

P ( M | A)
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Bayesian networks

• a BN consists of a Directed Acyclic Graph (DAG) and 
a set of conditional probability distributions

• in the DAG
– each node  denotes random a variable
– each edge from X to Y represents that X directly 

influences Y
– formally: each variable X is independent of its non-

descendants given its parents

• each node X has a conditional probability distribution 
(CPD) representing P(X | Parents(X) )

Bayesian networks

• a BN provides a compact representation of a joint 
probability distribution

 
P(X1,  …,  Xn ) =   P(Xi | Parents(Xi

i=1

n

∏ ))

 
P(X1,  …,  Xn ) =   P(X1) P(Xi | X1

i=2

n

∏ ,  …,  Xi−1))

• using the chain rule, a joint probability distribution can be 
expressed as
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Bayesian networks

P(B,E,A, J,M ) =   P(B)×
                             P(E)×
                             P(A | B,E)×
                             P(J | A)×
                             P(M | A)

• a standard representation of the joint distribution  for the 
Alarm example has 25 = 32 parameters

• the BN representation of this distribution has 20 parameters

Burglary Earthquake

Alarm

JohnCalls MaryCalls

Bayesian networks
• consider a case with 10 binary random variables

• How many parameters does a BN with the following 
graph structure have?

• How many parameters does the standard table 
representation of the joint distribution have?

= 42

= 1024

2

44

4
4 4

4

4 8 4
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Advantages of the Bayesian 
network representation

• Captures independence and conditional independence 
where they exist

• Encodes the relevant portion of the full joint among 
variables where dependencies exist

• Uses a graphical representation which lends insight into 
the complexity of inference

The inference task in Bayesian networks

Given: values for some variables in the network (evidence),
and a set of query variables

Do:  compute the posterior distribution over the query 
variables

• variables that are neither evidence variables nor query 
variables are hidden variables

• the BN representation is flexible enough that any set can 
be the evidence variables and any set can be the query 
variables
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Inference by enumeration

A

B E

MJ

• let a denote A=true, and ¬a denote A=false
• suppose we’re given the query: P(b | j, m)

“probability the house is being burglarized given that John 
and Mary both called”

• from the graph structure we can first compute:

P(b, j,m) = P(b)P(E)P(A | b,E)P( j | A)P(m | A)
a,¬a
∑

e,¬e
∑

sum over possible
values for E and A
variables (e, ¬e, a, ¬a)

Inference by enumeration

B E P(A)

t t 0.95

t f 0.94

f t 0.29

f f 0.00
1

P(B)

0.001

P(E)

0.001

A P(J)

t 0.9

f 0.05

A P(M)

t 0.7

f 0.01

= 0.001× (0.001× 0.95 × 0.9 ×   0.7 +
                 0.001× 0.05 × 0.05 × 0.01+
                 0.999 × 0.94 × 0.9 ×  0.7 +
                 0.999 × 0.06 × 0.05 × 0.01)

e, a
e, ¬a
¬e, a
¬ e, ¬ a

B E A J M

A

B E

MJ

P(b, j,m) = P(b)P(E)P(A | b,E)P( j | A)P(m | A)
a,¬a
∑

e,¬e
∑

             = P(b) P(E)P(A | b,E)P( j | A)P(m | A)
a,¬a
∑

e,¬e
∑
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• now do equivalent calculation for P(¬b,  j, m)
• and determine P(b | j, m)

Inference by enumeration

P(b | j,m) = P(b, j,m)
P( j,m)

= P(b, j,m)
P(b, j,m)+ P(¬b, j,m)

                

Comments on BN inference
• inference by enumeration is an exact method (i.e. it computes the 

exact answer to a given query)

• it requires summing over a joint distribution whose size is exponential 
in the number of variables

• in many cases we can do exact inference efficiently in large networks

– key insight: save computation by pushing sums inward

• in general, the Bayes net inference problem is NP-hard

• there are also methods for approximate inference – these get an 
answer which is “close”

• in general, the approximate inference problem is NP-hard also, but 
approximate methods work well for many real-world problems
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The parameter learning task

• Given: a set of training instances, the graph structure of a BN

• Do: infer the parameters of the CPDs

B E A J M

f f f t f
f t f f f
f f t f t

…

Burglary Earthquake

Alarm

JohnCalls MaryCalls

The structure learning task

• Given: a set of training instances

• Do: infer the graph structure (and perhaps the 
parameters of the CPDs too)

B E A J M

f f f t f
f t f f f
f f t f t

…
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Parameter learning and maximum 
likelihood estimation

• maximum likelihood estimation (MLE)
– given a model structure (e.g. a Bayes net graph) G

and a set of data D
– set the model parameters θ to maximize P(D | G, θ)

• i.e. make the data D look as likely as possible under 
the model P(D | G, θ)

Maximum likelihood estimation

x = 1,1,1,0,1,0,0,1,0,1{ }

consider trying to estimate the parameter θ (probability of heads) of 
a biased coin from a sequence of flips

for h heads in n flips
the MLE is h/n

 

L(θ : x1,…, xn ) = θ x1 (1−θ )1−x1!θ xn (1−θ )1−xn

                      = θ xi∑ (1−θ )n− xi∑

the likelihood function for θ is given by:
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MLE in a Bayes net

 

L(θ :D,G) = P(D |G,θ ) = P(x1
(d ), x2

(d ),…, xn
(d ) )

d∈D
∏

                                     = P(xi
(d ) | Parents(xi

(d ) ))
i
∏

d∈D
∏

                                     = P(xi
(d ) | Parents(xi

(d ) ))
d∈D
∏⎛⎝⎜

⎞
⎠⎟i

∏

independent parameter learning
problem for each CPD

Maximum likelihood estimation

P( j | a) = 3
4
= 0.75

P(¬j | a) = 1
4
= 0.25

P( j |¬a) = 2
4
= 0.5

P(¬j |¬a) = 2
4
= 0.5

P(b) = 1
8
= 0.125

P(¬b) = 7
8
= 0.875

B E A J M
f f f t f
f t f f f
f f f t t
t f f f t
f f t t f
f f t f t
f f t t t
f f t t t

A

B E

MJ

now consider estimating the CPD parameters for B and J in the alarm
network given the following data set
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Maximum likelihood estimation

P(b) = 0
8
= 0

P(¬b) = 8
8
= 1

B E A J M
f f f t f
f t f f f
f f f t t
f f f f t
f f t t f
f f t f t
f f t t t
f f t t t

A

B E

MJ

suppose instead, our data set was this…

do we really want to
set this to 0?

Maximum a posteriori (MAP) estimation

• instead of estimating parameters strictly from the 
data, we could start with some prior belief for each

• for example, we could use Laplace estimates

• where nv represents the number of occurrences of
value v

P(X = x) = nx +1
(nv +1)

v∈ Values(X )
∑ pseudocounts
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Maximum a posteriori estimation

a more general form: m-estimates

P(X = x) = nx + pxm

nv
v∈ Values(X )
∑⎛

⎝⎜
⎞

⎠⎟
+m number of  “virtual” instances

prior probability of value x

M-estimates example

B E A J M
f f f t f
f t f f f
f f f t t
f f f f t
f f t t f
f f t f t
f f t t t
f f t t t

A

B E

MJ

now let’s estimate parameters for B using m=4 and pb=0.25

P(b) = 0 + 0.25 × 4
8 + 4

= 1
12

= 0.08 P(¬b) = 8 + 0.75 × 4
8 + 4

= 11
12

= 0.92
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Missing data
• Commonly in machine learning tasks, some feature values are 

missing

• some variables may not be observable (i.e. hidden) even for training 
instances

• values for some variables may be missing at random: what caused the 
data to be missing does not depend on the missing data itself
• e.g. someone accidentally skips a question on an questionnaire
• e.g. a sensor fails to record a value due to a power blip

• values for some variables may be missing systematically: the 
probability of value being missing depends on the value
• e.g. a medical test result is missing because a doctor was fairly 

sure of a diagnosis given earlier test results
• e.g. the graded exams that go missing on the way home from 

school are those with poor scores

Missing data

• hidden variables; values missing at random
• these are the cases we’ll focus on
• one solution: try impute the values

• values  missing systematically
• may be sensible to represent “missing” as an explicit feature value
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Imputing missing data with EM

Given:
• data set with some missing values
• model structure, initial model parameters

Repeat until convergence
• Expectation (E) step: using current model, compute 

expectation over missing values
• Maximization (M) step: update model parameters with 

those that maximize probability of the data (MLE or MAP) 

example: EM for parameter learning

B E A J M
f f ? f f
f f ? t f
t f ? t t
f f ? f t
f t ? t f
f f ? f t
t t ? t t
f f ? f f
f f ? t f
f f ? f t

A

B E

MJ

B E P(A)

t t 0.9

t f 0.6

f t 0.3

f f 0.2

P(B)

0.1

P(E)

0.2 

A P(J)

t 0.9

f 0.2

A P(M)

t 0.8

f 0.1

suppose we’re given the following initial BN and training set
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example: E-step
B E A J M

f f t: 0.0069
f: 0.9931 f f

f f t:0.2
f:0.8 t f

t f t:0.98
f: 0.02 t t

f f t: 0.2
f: 0.8 f t

f t t: 0.3
f: 0.7 t f

f f t:0.2
f: 0.8 f t

t t t: 0.997
f: 0.003 t t

f f t: 0.0069
f: 0.9931 f f

f f t:0.2
f: 0.8 t f

f f t: 0.2
f: 0.8 f t

A

B E

MJ

B E P(A)

t t 0.9

t f 0.6

f t 0.3

f f 0.2

P(B)

0.1

P(E)

0.2 

A P(J)

t 0.9

f 0.2

A P(M)

t 0.8

f 0.1

P(¬a |¬b,¬e,¬j,¬m)

P(a |¬b,¬e,¬j,¬m)

example: E-step
P(a |¬b,¬e,¬j,¬m) = P(¬b,¬e,a,¬j,¬m)

P(¬b,¬e,a,¬j,¬m)+ P(¬b,¬e,¬a,¬j,¬m)

                               = 0.9 × 0.8 × 0.2 × 0.1× 0.2
0.9 × 0.8 × 0.2 × 0.1× 0.2 +  0.9 × 0.8 × 0.8 × 0.8 × 0.9

                               = 0.00288
.4176

= 0.0069

P(a |¬b,¬e, j,¬m) = P(¬b,¬e,a, j,¬m)
P(¬b,¬e,a, j,¬m)+ P(¬b,¬e,¬a, j,¬m)

                             = 0.9 × 0.8 × 0.2 × 0.9 × 0.2
0.9 × 0.8 × 0.2 × 0.9 × 0.2 +  0.9 × 0.8 × 0.8 × 0.2 × 0.9

                             = 0.02592
.1296

= 0.2

P(a | b,¬e, j,m)     = P(b,¬e,a, j,m)
P(b,¬e,a, j,m)+ P(b,¬e,¬a, j,m)

                             = 0.1× 0.8 × 0.6 × 0.9 × 0.8
0.1× 0.8 × 0.6 × 0.9 × 0.8 +  0.1× 0.8 × 0.4 × 0.2 × 0.1

                             = 0.03456
.0352

= 0.98
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example: M-step
B E A J M

f f t: 0.0069
f: 0.9931 f f

f f t:0.2
f:0.8 t f

t f t:0.98
f: 0.02 t t

f f t: 0.2
f: 0.8 f t

f t t: 0.3
f: 0.7 t f

f f t:0.2
f: 0.8 f t

t t t: 0.997
f: 0.003 t t

f f t: 0.0069
f: 0.9931 f f

f f t:0.2
f: 0.8 t f

f f t: 0.2
f: 0.8 f t

A

B E

MJ

P(a | b,e) = 0.997
1

P(a | b,¬e) = 0.98
1

P(a |¬b,e) = 0.3
1

P(a |¬b,¬e) = 0.0069 + 0.2 + 0.2 + 0.2 + 0.0069 + 0.2 + 0.2
7

P(a | b,e) = E #(a∧ b∧ e)
E #(b∧ e)

re-estimate probabilities
using expected counts

B E P(A)

t t 0.997

t f 0.98

f t 0.3

f f 0.145

re-estimate probabilities for 
P(J | A) and P(M | A) in same way

example: M-step
B E A J M

f f t: 0.0069
f: 0.9931 f f

f f t:0.2
f:0.8 t f

t f t:0.98
f: 0.02 t t

f f t: 0.2
f: 0.8 f t

f t t: 0.3
f: 0.7 t f

f f t:0.2
f: 0.8 f t

t t t: 0.997
f: 0.003 t t

f f t: 0.0069
f: 0.9931 f f

f f t:0.2
f: 0.8 t f

f f t: 0.2
f: 0.8 f t

P( j | a) =
0.2 + 0.98 + 0.3+ 0.997 + 0.2

0.0069 + 0.2 + 0.98 + 0.2 + 0.3+ 0.2 + 0.997 + 0.0069 + 0.2 + 0.2

P( j |¬a) =
0.8 + 0.02 + 0.7 + 0.003+ 0.8

0.9931+ 0.8 + 0.02 + 0.8 + 0.7 + 0.8 + 0.003+ 0.9931+ 0.8 + 0.8

P( j | a) = E #(a∧ j)
E #(a)

re-estimate probabilities
using expected counts
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Convergence of EM

• E and M steps are iterated until probabilities 
converge

• will converge to a maximum in the data likelihood 
(MLE or MAP)

• the maximum may be a local optimum, however
• the optimum found depends on starting conditions 

(initial estimated probability parameters)


