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Goals for the lecture

you should understand the following concepts

the Bayesian network representation
inference by enumeration
the parameter learning task for Bayes nets
the structure learning task for Bayes nets
maximum likelihood estimation
Laplace estimates
m-estimates
missing data in machine learning

* hidden variables

* missing at random

* missing systematically

the EM approach to imputing missing values in Bayes net
parameter learning




Bayesian network example

» Consider the following 5 binary random variables:
B = a burglary occurs at your house
E = an earthquake occurs at your house
A = the alarm goes off
J = John calls to report the alarm
M = Mary calls to report the alarm

» Suppose we want to answer queries like what is
P(B|M,J)?

Bayesian network example
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t f t f
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Bayesian networks

+ a BN consists of a Directed Acyclic Graph (DAG) and
a set of conditional probability distributions

* inthe DAG
— each node denotes random a variable
— each edge from X to Y represents that X directly
influences Y
— formally: each variable X is independent of its non-
descendants given its parents

+ each node X has a conditional probability distribution
(CPD) representing P(X | Parents(X) )

Bayesian networks

 using the chain rule, a joint probability distribution can be
expressed as

P(X,, ... X,)= P(Xl)ll[P(Xile, X))

« a BN provides a compact representation of a joint
probability distribution

P(X,, ....X,)= ll[P(Xi | Parents(X,))

i=1




Bayesian networks

Earthquake

Burglary

P(B,E,A,J,M)= P(B)X
P(E)x
P(A|B,E)x
P(J1A)x
P(M1A)

+ a standard representation of the joint distribution for the
Alarm example has 25 = 32 parameters

 the BN representation of this distribution has 20 parameters

Bayesian networks

+ consider a case with 10 binary random variables

* How many parameters does a BN with the following
graph structure have?

* How many parameters does the standard table
representation of the joint distribution have? = 1024




Advantages of the Bayesian
network representation

» Captures independence and conditional independence
where they exist

* Encodes the relevant portion of the full joint among
variables where dependencies exist

* Uses a graphical representation which lends insight into
the complexity of inference

The inference task in Bayesian networks

Given: values for some variables in the network (evidence),
and a set of query variables

Do: compute the posterior distribution over the query
variables

 variables that are neither evidence variables nor query
variables are hidden variables

« the BN representation is flexible enough that any set can
be the evidence variables and any set can be the query
variables




Inference by enumeration

* let a denote A=true, and —a denote A=false
* suppose we're given the query: P(b | j, m)

“probability the house is being burglarized given that John
and Mary both called”

» from the graph structure we can first compute:

G & Pb,j,m)=Y,Y, P(b)P(E)P(AIb,E)P(j1 A)P(m| A)
sum over possible

e—ea,a
values for E and A

o @ variables (e, —e, a, —a)

Inference by enumeration
P(b,j,m)=Y.> P(b)P(E)P(A|b,E)P(jl A)P(m|A)

e,—ea,a

=P(h)Y, Y P(E)P(AIb,E)P(j1A)P(m| A)

e,—ea,—a
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N 0.999%0.06x0.05x001) = ~a
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Inference by enumeration

* now do equivalent calculation for P(=b, j, m)
* and determine P(b | j, m)

P(bl_] m): P(b"]’m) — P(b’.]’m)
VT UPGum)  P(b,jm)+ P(=b, j,m)

Comments on BN inference

* inference by enumeration is an exact method (i.e. it computes the
exact answer to a given query)

+ it requires summing over a joint distribution whose size is exponential
in the number of variables

* in many cases we can do exact inference efficiently in large networks

— key insight: save computation by pushing sums inward
* in general, the Bayes net inference problem is NP-hard

+ there are also methods for approximate inference — these get an
answer which is “close”

* in general, the approximate inference problem is NP-hard also, but
approximate methods work well for many real-world problems




The parameter learning task

» Given: a set of training instances, the graph structure of a BN

Earthquake

= = | W
I S el
T
=

» Do: infer the parameters of the CPDs

The structure learning task

» Given: a set of training instances

= = | W

E A J M
f f t f
t f f f
f t f t

» Do: infer the graph structure (and perhaps the
parameters of the CPDs too)




Parameter learning and maximum
likelihood estimation

» maximum likelihood estimation (MLE)

— given a model structure (e.g. a Bayes net graph) G
and a set of data D

— set the model parameters 6 to maximize P(D | G, 6)

* j.e. make the data D look as likely as possible under
the model P(D | G, 0)

Maximum likelihood estimation

consider trying to estimate the parameter 6 (probability of heads) of
a biased coin from a sequence of flips

x=1{1,1,1,0,1,0,0,1,0,1}
the likelihood function for 6 is given by:

L(Q :xl .. .’xn) — exl (1 _ 0)1—):1 . .exn (1 _ e)l—xn
— X (1— @) 2"

3 Heads SHead:
7 Taile S Taile

for h heads in n flips § Heade P IHeads
the MLE is h/n




MLE in a Bayes net

L(:D,G)=P(D1G.0)= ][ P(x"x",...x")

deD
_ HH P(x| Parents(x\"))
deD i
_ H(H P(x1 Parents(xi(d)))]
i deD

L )
T

independent parameter learning
problem for each CPD

Maximum likelihood estimation

now consider estimating the CPD parameters for B and J in the alarm
network given the following data set

e e B E A J M P(b)=%=0.125
f f f t f ;
O f t f f f P(=b)= 2 0.875
f f f t t
t f f f t
@ £t ot f P(jla):§:0.75
f f t f t
f f t t t P(—|j|a)=l=0.25
f f t t t 42-
P(jlﬁa)zzzo.s

2
P(—jl—a :—:0.5
(| =a) 2
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Maximum likelihood estimation

suppose instead, our data set was this...

ONG I Pb)=2=0
f f f t f 8
f t f f f 8

(4) £f f ot t Peb=g=1

f f f f t

o @ f f t ¢ f do we really want to
f f t f t set this to 0?
f f t t t
f f t t t

Maximum a posteriori (MAP) estimation

* instead of estimating parameters strictly from the
data, we could start with some prior belief for each

» for example, we could use Laplace estimates

n +1
ve Values(X)

* where n, represents the number of occurrences of
value v

pseudocounts
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Maximum a posteriori estimation

a more general form: m-estimates

n, + pjﬂN prior probability of value x

2 n, [+ M  number of “virtual” instances
ve Values(X)

P(X=x)=

M-estimates example

now let’'s estimate parameters for B using m=4 and p,=0.25

B E A4 J M
() (&) £ f  f ot f
£t f f f
£fF ot ot
(4] £ f f ot
£f ot ot f
(1) () T S S
f f t t t
f f t t t
pay=2102x4 105 ppy=3t0xd 14,
8+4 12 8+4 12
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Missing data

Commonly in machine learning tasks, some feature values are
missing

some variables may not be observable (i.e. hidden) even for training
instances

values for some variables may be missing at random: what caused the
data to be missing does not depend on the missing data itself

* e.g. someone accidentally skips a question on an questionnaire
* e.g. a sensor fails to record a value due to a power blip

values for some variables may be missing systematically: the
probability of value being missing depends on the value
* e.g. a medical test result is missing because a doctor was fairly
sure of a diagnosis given earlier test results
* e.g. the graded exams that go missing on the way home from
school are those with poor scores

Missing data

hidden variables; values missing at random
» these are the cases we’ll focus on
» one solution: try impute the values

values missing systematically
* may be sensible to represent “missing” as an explicit feature value
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Imputing missing data with EM

Given:
+ data set with some missing values
* model structure, initial model parameters

Repeat until convergence
» Expectation (E) step: using current model, compute
expectation over missing values

* Maximization (M) step: update model parameters with
those that maximize probability of the data (MLE or MAP)

example: EM for parameter learning

suppose we’re given the following initial BN and training set

B E A J M

P(B) P(E) f f ? f f

0.1 0.2 ¢ ¢ 9 " ¢

(3) (&) £ f 7t ot

f ‘f f; (_‘;) £ £ £t
¢ £ 0.6 ° f t ? t f
f f 0.2 t t ? t t
(1) () f f ? f f

P P P PM) f f ? t f

t 0.9 t 0.8 f f ? f t

f 0.2 f 0.1
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example: E-step

B E A J
P(al—b,—e,—j,—m) — | T 0.0069
f f f
. f: 0.9931
P(—|a |—|b,—|e,—|],—|m)\ £0.2
f f £:0.8 t
P(B) P(E) :0.98
0.1 0.2 t f :0.02 t
t:0.2
@ & Bt pes T
B E P(4) 0.3
t t 0.9 f t £:0.7 t
t f 0.6 ° £0.2
f t 0.3 f f £:0.8 f
f f 0.2 t t t: 0.997 t
o @ f: 0.003
t: 0.0069
A PwJ) A P(M) f f £:0.9931 f
t 0.9 t 0.8 t:0.2
f 0.2 f 0.1 f f f: 0.8 t
t:0.2
f f £:0.8 f

example: E-step

P(b e,
P(al—b,—e,—j,—m)= (b, me,a,—,mim)

P(=b,—e,a,—j,—m)+ P(=b,—e,—a,—j,—m)
_ 09%x0.8x0.2x0.1x0.2
09x0.8x02x0.1x02 + 09x0.8x0.8x0.8x0.9
_ 0.00288 —0.0069
4176

P(—b,=e,a,ji=
P(al—b,—e, j,—m)= (b, e, . —m)

P(=b,—e,a,j,—m)+ P(—=b,—e,—a,j,—m)
_ 0.9x0.8x0.2x0.9x0.2
T 09%0.8x02x09%02 + 09%x0.8x0.8x02x0.9
_0.02592

1296

P(alb—e.jim) = Pb—eajm
P(b,—e.a,j,m)+ P(b,—e,—a,j,m)

_ 0.1x0.8x0.6x0.9x0.8

T 0.1x08x0.6X0.9x0.8 + 0.1x0.8x0.4x0.2%0.1

_ 003456

To0352
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example: M-step

re-estimate probabilities ;) E#anbre) | B E 4
using expected counts ’ E#(bne) ) 600069
:0.9931
0.997 0.2
P(a Ib,e)—i1 f f 0.8
0.98 £0.98
P(alb,—|e)=—l t f £0.02
03 t:0.2
P(a|—|b,e):T f f £0.8
t: 0.3
Pl by = 20069 +02:+02:+02+0.0069+0.2+0.2 £ ¢ w0
- -0,
0.2
f f
® @® [ lm
¢ t | 0997 ¢ [ 0997
¢ ¢ 0.98 :0.003
t: 0.0069
0 f ! 0.3 f f £:0.9931
f f 0.145 . c 02
. Lregs f: 0.8
re-estimate probabilities for coa
0 @ P(J1A)and P(M1A)in same way| f f cog
example: M-step
re-estimate probabilities P(jla)= E#anj) B E A
using expected counts E#(a) f t: 0.0069
f: 0.9931
P(jla)= £ £ t:0.2
02+0.98+03+0.997+0.2 foogz
0.0069+02+0.98+02+0.3+0.2+0.997+0.0069+02+02 | t f ;602
0.2
P(jl—a)= f f £0.8
0.8+0.02+0.7+0.003+0.8 03
0.9931+08+0.02+08+0.7+08+0003+09931+08+08 | © t £0.7
0.2
f f £:0.8
t t t: 0.997
f: 0.003
t: 0.0069
f f £:0.9931
t:0.2
f f f: 0.8
t:0.2
f f £:0.8
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Convergence of EM

E and M steps are iterated until probabilities
converge

will converge to a maximum in the data likelihood
(MLE or MAP)

the maximum may be a local optimum, however

the optimum found depends on starting conditions
(initial estimated probability parameters)
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