Learning Bayesian Networks
(part 1)

Mark Craven
Computer Sciences 760
Fall 2016

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts

• the Bayesian network representation
• inference by enumeration
• the parameter learning task for Bayes nets
• the structure learning task for Bayes nets
• maximum likelihood estimation
• Laplace estimates
• m-estimates
• missing data in machine learning
 • hidden variables
 • missing at random
 • missing systematically
• the EM approach to imputing missing values in Bayes net parameter learning
Bayesian network example

- Consider the following 5 binary random variables:
 - B = a burglary occurs at your house
 - E = an earthquake occurs at your house
 - A = the alarm goes off
 - J = John calls to report the alarm
 - M = Mary calls to report the alarm

- Suppose we want to answer queries like what is $P(B \mid M, J)$?
Bayesian networks

- a BN consists of a Directed Acyclic Graph (DAG) and a set of conditional probability distributions

- in the DAG
 - each node denotes random a variable
 - each edge from X to Y represents that X directly influences Y
 - formally: each variable X is independent of its non-descendants given its parents

- each node X has a conditional probability distribution (CPD) representing $P(X | Parents(X))$

Bayesian networks

- using the chain rule, a joint probability distribution can be expressed as

 $$P(X_1, \ldots, X_n) = P(X_1) \prod_{i=2}^{n} P(X_i | X_1, \ldots, X_{i-1})$$

- a BN provides a compact representation of a joint probability distribution

 $$P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | Parents(X_i))$$
Bayesian networks

\[P(B, E, A, J, M) = P(B) \times P(E) \times P(A \mid B, E) \times P(J \mid A) \times P(M \mid A) \]

- a standard representation of the joint distribution for the Alarm example has \(2^5 = 32\) parameters
- the BN representation of this distribution has 20 parameters

Bayesian networks

- consider a case with 10 binary random variables

- How many parameters does a BN with the following graph structure have?

\[= 42 \]

- How many parameters does the standard table representation of the joint distribution have? \(= 1024\)
Advantages of the Bayesian network representation

- Captures independence and conditional independence where they exist
- Encodes the relevant portion of the full joint among variables where dependencies exist
- Uses a graphical representation which lends insight into the complexity of inference

The inference task in Bayesian networks

Given: values for some variables in the network (*evidence*), and a set of *query* variables

Do: compute the posterior distribution over the query variables

- variables that are neither evidence variables nor query variables are *hidden* variables
- the BN representation is flexible enough that any set can be the evidence variables and any set can be the query variables
Inference by enumeration

• let a denote $A=true$, and $\neg a$ denote $A=false$

• suppose we’re given the query: $P(b \mid j, m)$
 “probability the house is being burglarized given that John and Mary both called”

• from the graph structure we can first compute:

$$P(b, j, m) = \sum_{e, \neg e, a, \neg a} P(b)P(E)P(A \mid b, E)P(j \mid A)P(m \mid A)$$

sum over possible values for E and A variables ($e, \neg e, a, \neg a$)

Inference by enumeration

$$P(b, j, m) = \sum_{e, \neg e, a, \neg a} P(b)P(E)P(A \mid b, E)P(j \mid A)P(m \mid A)$$

$$\sum_{e, \neg e, a, \neg a} P(b)P(E)P(A \mid b, E)P(j \mid A)P(m \mid A)$$

$$= P(b)\sum_{e, \neg e, a, \neg a} P(E)P(A \mid b, E)P(j \mid A)P(m \mid A)$$

$$= 0.001 \times (0.001 \times 0.95 \times 0.9 \times 0.7 + e, a$$

$$0.001 \times 0.05 \times 0.05 \times 0.01 + e, \neg a$$

$$0.999 \times 0.94 \times 0.9 \times 0.7 + \neg e, a$$

$$0.999 \times 0.06 \times 0.05 \times 0.01) \neg e, \neg a$$

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>$P(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>0.95</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>0.94</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>0.29</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>$P(B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.9</td>
</tr>
<tr>
<td>f</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Inference by enumeration

• now do equivalent calculation for \(P(\neg b, j, m) \)
• and determine \(P(b \mid j, m) \)

\[
P(b \mid j, m) = \frac{P(b, j, m)}{P(j, m)} = \frac{P(b, j, m)}{P(b, j, m) + P(\neg b, j, m)}
\]

Comments on BN inference

• inference by enumeration is an exact method (i.e. it computes the exact answer to a given query)
• it requires summing over a joint distribution whose size is exponential in the number of variables
• in many cases we can do exact inference efficiently in large networks
 – key insight: save computation by pushing sums inward
• in general, the Bayes net inference problem is NP-hard
• there are also methods for approximate inference – these get an answer which is “close”
• in general, the approximate inference problem is NP-hard also, but approximate methods work well for many real-world problems
The parameter learning task

- Given: a set of training instances, the graph structure of a BN

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>J</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
</tr>
</tbody>
</table>

- Do: infer the parameters of the CPDs

The structure learning task

- Given: a set of training instances

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>J</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
</tr>
</tbody>
</table>

- Do: infer the graph structure (and perhaps the parameters of the CPDs too)
Parameter learning and maximum likelihood estimation

- **maximum likelihood estimation** (MLE)
 - given a model structure (e.g. a Bayes net graph) \(G \) and a set of data \(D \)
 - set the model parameters \(\theta \) to maximize \(P(D \mid G, \theta) \)

- i.e. make the data \(D \) look as likely as possible under the model \(P(D \mid G, \theta) \)

Maximum likelihood estimation

consider trying to estimate the parameter \(\theta \) (probability of heads) of a biased coin from a sequence of flips

\(x = \{1,1,1,0,1,0,1,0,1,1\} \)

the likelihood function for \(\theta \) is given by:

\[
L(\theta : x_1, \ldots, x_n) = \theta^{x_1}(1-\theta)^{1-x_1} \cdots \theta^{x_n}(1-\theta)^{1-x_n} = \theta^{\sum x_i}(1-\theta)^{n-\sum x_i}
\]

for \(h \) heads in \(n \) flips
the MLE is \(\frac{h}{n} \)
MLE in a Bayes net

\[L(\theta : D, G) = P(D \mid G, \theta) = \prod_{d \in D} P(x_{1}^{(d)}, x_{2}^{(d)}, \ldots, x_{n}^{(d)}) \]
\[= \prod_{d \in D} \prod_{i} P(x_{i}^{(d)} \mid \text{Parents}(x_{i}^{(d)})) \]
\[= \prod_{i} \left(\prod_{d \in D} P(x_{i}^{(d)} \mid \text{Parents}(x_{i}^{(d)})) \right) \]

independent parameter learning problem for each CPD

Maximum likelihood estimation

now consider estimating the CPD parameters for \(B \) and \(J \) in the alarm network given the following data set

<table>
<thead>
<tr>
<th>(B)</th>
<th>(E)</th>
<th>(A)</th>
<th>(J)</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
<td>(f)</td>
</tr>
<tr>
<td>(f)</td>
<td>(t)</td>
<td>(f)</td>
<td>(f)</td>
<td>(f)</td>
</tr>
<tr>
<td>(f)</td>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>(t)</td>
<td>(f)</td>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
</tr>
<tr>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
<td>(f)</td>
</tr>
<tr>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
</tbody>
</table>

\(P(b) = \frac{1}{8} = 0.125 \)
\(P(\neg b) = \frac{7}{8} = 0.875 \)
\(P(j \mid a) = \frac{3}{4} = 0.75 \)
\(P(\neg j \mid a) = \frac{1}{4} = 0.25 \)
\(P(j \mid \neg a) = \frac{2}{4} = 0.5 \)
\(P(\neg j \mid \neg a) = \frac{2}{4} = 0.5 \)
Maximum likelihood estimation

suppose instead, our data set was this…

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>J</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

\[P(b) = \frac{0}{8} = 0 \]

\[P(\neg b) = \frac{8}{8} = 1 \]

do we really want to set this to 0?

Maximum a posteriori (MAP) estimation

• instead of estimating parameters strictly from the data, we could start with some prior belief for each

• for example, we could use Laplace estimates

\[
P(X = x) = \frac{n_x + 1}{\sum_{v \in \text{Values}(X)} (n_v + 1)}
\]

• where \(n_v \) represents the number of occurrences of value \(v \)
Maximum a posteriori estimation

a more general form: \(m \)-estimates

\[
P(X = x) = \frac{n_x + p_x m}{\sum_{v \in \text{Values}(X)} n_v} + m
\]

- prior probability of value \(x \)
- number of “virtual” instances

M-estimates example

now let’s estimate parameters for \(B \) using \(m=4 \) and \(p_B=0.25 \)

\[
P(b) = \frac{0 + 0.25 \times 4}{8 + 4} = \frac{1}{12} = 0.08
\]

\[
P(\neg b) = \frac{8 + 0.75 \times 4}{8 + 4} = \frac{11}{12} = 0.92
\]
Missing data

• Commonly in machine learning tasks, some feature values are missing

• some variables may not be observable (i.e. hidden) even for training instances

• values for some variables may be missing at random: what caused the data to be missing does not depend on the missing data itself
 • e.g. someone accidentally skips a question on an questionnaire
 • e.g. a sensor fails to record a value due to a power blip

• values for some variables may be missing systematically: the probability of value being missing depends on the value
 • e.g. a medical test result is missing because a doctor was fairly sure of a diagnosis given earlier test results
 • e.g. the graded exams that go missing on the way home from school are those with poor scores

Missing data

• hidden variables; values missing at random
 • these are the cases we’ll focus on
 • one solution: try impute the values

• values missing systematically
 • may be sensible to represent “missing” as an explicit feature value
Imputing missing data with EM

Given:
- data set with some missing values
- model structure, initial model parameters

Repeat until convergence
- **Expectation (E)** step: using current model, compute expectation over missing values
- **Maximization (M)** step: update model parameters with those that maximize probability of the data (MLE or MAP)

example: EM for parameter learning

suppose we’re given the following initial BN and training set

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>(P(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>0.9</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>0.6</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>0.3</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>(P(B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>(P(J))</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.9</td>
</tr>
<tr>
<td>f</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>(P(M))</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.8</td>
</tr>
<tr>
<td>f</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>J</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>?</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>?</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>?</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>?</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>?</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>?</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>?</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>?</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>?</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>?</td>
<td>f</td>
<td>t</td>
</tr>
</tbody>
</table>
example: E-step

\[P(a \mid \neg b, \neg e, \neg j, \neg m) \]
\[P(\neg a \mid \neg b, \neg e, \neg j, \neg m) \]

\[
\begin{array}{c|c|c|c|c}
B & E & A & J & M \\
\hline
f & f & f & f & f \\
0.0069 & 0.0069 & 0.0931 & 0.0931 & 0.0931 \\
0.098 & 0.098 & 0.02 & 0.02 & 0.02 \\
f & f & t & f & f \\
f & t & 0.2 & f & t \\
t & t & 0.3 & t & f \\
f & f & 0.2 & f & t \\
t & t & 0.997 & t & t \\
f & f & 0.0069 & f & f \\
f & f & 0.2 & f & t \\
f & f & 0.2 & f & t \\
f & f & 0.2 & f & t \\
\end{array}
\]

- Example: E-step

\[P(a \mid \neg b, \neg e, \neg j, \neg m) = \frac{P(\neg b, \neg e, a, j, \neg m)}{P(\neg b, \neg e, a, j, \neg m) + P(\neg b, \neg e, a, j, \neg m)} \]
\[= \frac{0.9 \times 0.8 \times 0.2 \times 0.1 \times 0.2}{0.9 \times 0.8 \times 0.2 \times 0.1 \times 0.2 + 0.9 \times 0.8 \times 0.8 \times 0.9} \]
\[= 0.0069 \approx 0.0069 \]

\[P(a \mid b, \neg e, j, \neg m) = \frac{P(b, \neg e, a, j, \neg m)}{P(b, \neg e, a, j, \neg m) + P(b, \neg e, a, j, \neg m)} \]
\[= \frac{0.9 \times 0.8 \times 0.2 \times 0.1 \times 0.2}{0.9 \times 0.8 \times 0.2 \times 0.1 \times 0.2 + 0.9 \times 0.8 \times 0.8 \times 0.9} \]
\[= 0.02592 = 0.02592 \]

\[P(a \mid b, \neg e, j, \neg m) = \frac{P(b, \neg e, a, j, \neg m)}{P(b, \neg e, a, j, \neg m) + P(b, \neg e, a, j, \neg m)} \]
\[= \frac{0.1 \times 0.8 \times 0.2 \times 0.1 \times 0.2}{0.1 \times 0.8 \times 0.2 \times 0.1 \times 0.2 + 0.1 \times 0.8 \times 0.8 \times 0.9} \]
\[= 0.03456 = 0.03456 \]

\[P(a \mid b, \neg e, j, \neg m) = \frac{P(b, \neg e, a, j, \neg m)}{P(b, \neg e, a, j, \neg m) + P(b, \neg e, a, j, \neg m)} \]
\[= \frac{0.1 \times 0.8 \times 0.2 \times 0.1 \times 0.2}{0.1 \times 0.8 \times 0.2 \times 0.1 \times 0.2 + 0.1 \times 0.8 \times 0.8 \times 0.9} \]
\[= 0.0352 = 0.0352 \]

- Example: E-step
example: M-step

re-estimate probabilities using expected counts

\[P(a \mid b, e) = \frac{E \#(a \land b \land e)}{E \#(b \land e)} \]

\[
\begin{align*}
P(a \mid b, e) &= \frac{0.997}{1} \\
P(a \mid b, \neg e) &= \frac{0.98}{1} \\
P(a \mid \neg b, e) &= \frac{0.3}{1} \\
P(a \mid \neg b, \neg e) &= \frac{0.0069 + 0.2 + 0.2 + 0.2 + 0.0069 + 0.2 + 0.2}{7} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>P(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>0.997</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>0.98</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>0.3</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>0.145</td>
</tr>
</tbody>
</table>

re-estimate probabilities for \(P(J \mid A) \) and \(P(M \mid A) \) in same way

\[
\begin{align*}
P(j \mid a) &= \frac{E \#(a \land j)}{E \#(a)} \\
P(j \mid \neg a) &= \frac{0.8 + 0.02 + 0.2 + 0.2 + 0.3 + 0.2 + 0.997 + 0.0069 + 0.2 + 0.2}{7} \\
\end{align*}
\]

\[
\begin{align*}
P(j \mid a) &= \frac{E \#(a \land j)}{E \#(a)} \\
P(j \mid \neg a) &= \frac{0.8 + 0.02 + 0.7 + 0.003 + 0.8}{0.9931 + 0.8 + 0.02 + 0.8 + 0.7 + 0.8 + 0.003 + 0.9931 + 0.8 + 0.8} \\
\end{align*}
\]
Convergence of EM

• E and M steps are iterated until probabilities converge
• will converge to a maximum in the data likelihood (MLE or MAP)
• the maximum may be a local optimum, however
• the optimum found depends on starting conditions (initial estimated probability parameters)