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Learning Bayesian Networks
(part 3)

Mark Craven and David Page
Computer Sciences 760

Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed 
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture
you should understand the following concepts

• the naïve Bayes classifier
• the Tree Augmented Network (TAN) algorithm
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Bayes nets for classification

• the learning methods for BNs we’ve discussed so far can 
be thought of as being unsupervised
• the learned models are not constructed to predict the 

value of a special class variable
• instead, they can predict values for arbitrarily selected 

query variables

• now let’s consider BN learning for a standard supervised 
task (learn a model to predict Y given X1 … Xn )

Naïve Bayes

• one very simple BN approach for supervised tasks is 
naïve Bayes

• in naïve Bayes, we assume that all features Xi are 
conditionally independent given the class Y

XnXn-1X2X1

Y

 
P(X1,  …,  Xn ,  Y ) = P(Y ) P(Xi

i=1

n

∏ |Y )
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Naïve Bayes

Learning
• estimate P(Y = y) for each value of the class variable Y
• estimate P(Xi =x | Y = y) for each Xi

XnXn-1X2X1

Y

 

P(Y = y | x) = P(y)P(x | y)
P(y ')P(x | y ')

y '  ∈ values(Y )
∑

 

=
P(y) P(xi | y)

i=1

n

∏

P(y ') P(xi | y ')
i=1

n

∏⎛
⎝⎜

⎞
⎠⎟y '  ∈ values(Y )

∑

Classification: use Bayes’ Rule

Naïve Bayes vs. BNs learned with 
an unsupervised structure search

test-set error on 25
classification data sets 
from the UC-Irvine 
Repository

Figure from Friedman et al., Machine Learning 1997
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The Tree Augmented Network 
(TAN) algorithm

[Friedman et al., Machine Learning 1997]

• learns a tree structure to augment the edges of a naïve 
Bayes network

• algorithm
1. compute weight I(Xi, Xj | Y) for each possible edge 

(Xi, Xj) between features
2. find maximum weight spanning tree (MST) for graph 

over X1 … Xn

3. assign edge directions in MST
4. construct a TAN model by adding node for Y and an 

edge from Y to each Xi

Conditional mutual information in the 
TAN algorithm

I(Xi ,Xj |Y ) =

     P(xi ,  x j ,  y)log2
y∈ values(Y )
∑ P(xi ,  x j |  y)

P(xi | y)P(x j | y)x j∈ values(X j )
∑

xi∈ values(Xi )
∑

conditional mutual information is used to calculate edge weights

“how much information Xi provides about Xj when the value of Y is known”
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Example TAN network
class variable

naïve Bayes edges

edges determined by MST 

Y

Classification with a TAN network
Y

𝑃 𝑌 = 𝑦 𝒙 =
𝑃 𝑦 𝑃(𝒙|𝑦)

∑ 𝑃 𝑦* 𝑃(𝒙|𝑦*)�
,*

𝑃 𝒙 𝑦 = 𝑃 𝑝𝑟𝑒𝑔𝑛𝑎𝑛𝑡	 𝑦 𝑃 𝑎𝑔𝑒 𝑦, 𝑝𝑟𝑒𝑔𝑛𝑎𝑛𝑡 𝑃 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 𝑦, 𝑎𝑔𝑒 𝑃 𝑑𝑝𝑓 𝑦, 𝑖𝑛𝑠𝑢𝑙𝑖𝑛
𝑃 𝑚𝑎𝑠𝑠 𝑦, 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 𝑃(𝑔𝑙𝑢𝑐𝑜𝑠𝑒|𝑦, 𝑖𝑛𝑠𝑢𝑙𝑖𝑛)

As before use Bayes’ Rule:

In the example network, we calculate 𝑃 𝒙 𝑦 	as:



6

TAN vs. Chow-Liu
• TAN is mostly✽ focused on learning a Bayes net 

specifically for classification problems

• the MST includes only the feature variables (the class 
variable is used only for calculating edge weights)

• conditional mutual information is used instead of mutual 
information in determining edge weights in the 
undirected graph

• the directed graph determined from the MST is added to 
the Y → Xi edges that are in a naïve Bayes network

✽ although parameters are still set to maximize 𝑃(𝑦, 𝒙) instead of 𝑃 𝑦	 	𝒙)

TAN vs. Naïve Bayes

test-set error on 25
data sets from the
UC-Irvine Repository

Figure from Friedman et al., Machine Learning 1997
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Comments on Bayesian networks

• the BN representation has many advantages
• easy to encode domain knowledge (direct 

dependencies, causality)
• can represent uncertainty
• principled methods for dealing with missing values
• can answer arbitrary queries (in theory; in practice 

may be intractable)
• for supervised tasks, it may be advantageous to use a 

learning approach (e.g. TAN) that focuses on the 
dependencies that are most important

Comments on Bayesian networks 
(continued)

• although very simplistic, naïve Bayes often learns highly 
accurate models

• we focused on learning Bayes nets with only discrete 
variables; can also have numeric variables (although not 
as parents)

• BNs are one instance of a more general class of 
probabilistic graphical models


