Learning Bayesian Networks
(part 3)

Mark Craven and David Page
Computer Sciences 760
Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

You should understand the following concepts
- the naïve Bayes classifier
- the Tree Augmented Network (TAN) algorithm
Bayes nets for classification

- the learning methods for BNs we’ve discussed so far can be thought of as being unsupervised
 - the learned models are not constructed to predict the value of a special class variable
 - instead, they can predict values for arbitrarily selected query variables

- now let’s consider BN learning for a standard supervised task (learn a model to predict Y given $X_1 \ldots X_n$)

Naïve Bayes

- one very simple BN approach for supervised tasks is naïve Bayes
 - in naïve Bayes, we assume that all features X_i are conditionally independent given the class Y

\[
P(X_1, \ldots, X_n, Y) = P(Y) \prod_{i=1}^{n} P(X_i | Y)
\]
Naïve Bayes

Learning
• estimate $P(Y = y)$ for each value of the class variable Y
• estimate $P(X_i = x | Y = y)$ for each X_i

Classification: use Bayes’ Rule

\[
P(Y = y | x) = \frac{P(y)P(x | y)}{\sum_{y' \in \text{values}(Y)} P(y')P(x | y')}
= \frac{P(y) \prod_{i=1}^{n} P(x_i | y)}{\sum_{y' \in \text{values}(Y)} \left(P(y') \prod_{i=1}^{n} P(x_i | y') \right)}
\]

Naïve Bayes vs. BNs learned with an unsupervised structure search

test-set error on 25 classification data sets from the UC-Irvine Repository

Figure from Friedman et al., Machine Learning 1997
The Tree Augmented Network (TAN) algorithm
[Friedman et al., Machine Learning 1997]

• learns a tree structure to augment the edges of a naïve Bayes network

• algorithm
 1. compute weight $I(X_i, X_j \mid Y)$ for each possible edge (X_i, X_j) between features
 2. find maximum weight spanning tree (MST) for graph over $X_1 \ldots X_n$
 3. assign edge directions in MST
 4. construct a TAN model by adding node for Y and an edge from Y to each X_i

Conditional mutual information in the TAN algorithm

conditional mutual information is used to calculate edge weights

$$I(X_i, X_j \mid Y) = \sum_{x_i \in \text{values}(X_i)} \sum_{x_j \in \text{values}(X_j)} \sum_{y \in \text{values}(Y)} P(x_i, x_j, y) \log \frac{P(x_j, x_j \mid y)}{P(x_i \mid y) P(x_j \mid y)}$$

“how much information X_i provides about X_j when the value of Y is known”
Example TAN network

naïve Bayes edges
edges determined by MST

Classification with a TAN network

As before use Bayes' Rule:

\[P(Y = y|x) = \frac{P(y)P(x|y)}{\sum_{y'} P(y')P(x|y')} \]

In the example network, we calculate \(P(x|y) \) as:

\[P(x|y) = P\text{(pregnant }|y)P\text{(age }|y, \text{pregnant})P\text{(insulin }|y, \text{age})P\text{(dpf }|y, \text{insulin}) \]

\[P\text{(mass }|y, \text{insulin})P\text{(glucose }|y, \text{insulin}) \]
TAN vs. Chow-Liu

- TAN is mostly* focused on learning a Bayes net specifically for classification problems
- the MST includes only the feature variables (the class variable is used only for calculating edge weights)
- conditional mutual information is used instead of mutual information in determining edge weights in the undirected graph
- the directed graph determined from the MST is added to the $Y \rightarrow X_i$ edges that are in a naïve Bayes network

* although parameters are still set to maximize $P(y, x)$ instead of $P(y \mid x)$

TAN vs. Naïve Bayes

test-set error on 25 data sets from the UC-Irvine Repository

Figure from Friedman et al., Machine Learning 1997
Comments on Bayesian networks

• the BN representation has many advantages
 • easy to encode domain knowledge (direct dependencies, causality)
 • can represent uncertainty
 • principled methods for dealing with missing values
 • can answer arbitrary queries (in theory; in practice may be intractable)
 • for supervised tasks, it may be advantageous to use a learning approach (e.g. TAN) that focuses on the dependencies that are most important

Comments on Bayesian networks (continued)

• although very simplistic, naïve Bayes often learns highly accurate models
• we focused on learning Bayes nets with only discrete variables; can also have numeric variables (although not as parents)
• BNs are one instance of a more general class of probabilistic graphical models