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Goals for the Lecture

* You should understand the following concepts:

— one-hot encoding

— autoencoders

— denoising autoencoders

— recurrent neural networks

— convolutional neural networks
— parameter tying

— pooling

— dropout training

— batch normalization

— Nesterov momentum



Wrapping Up Last Time: Initializing weights

* Weights should be initialized to

« small values so that the sigmoid activations are in the range
where the derivative is large (learning will be quicker)
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* random vaIUes fo ensure symmetry breaking (i.e. if all weights
are the same, the hidden units will all represent the same thing)

« typical initial weight range [-0.01, 0.01]



Setting the learning rate

convergence depends on having an appropriate learning rate

Error

v

,_ n too small (error goes down
a little)

< 1 too large (error goes up)




Stopping criteria

e conventional gradient descent: train until local minimum reached

« empirically better approach: early stopping
« use a validation set to monitor accuracy during training iterations
« return the weights that result in minimum validation-set error

error

Training error ——
Validation error ------

training iterations

stop training here



Input (feature) encoding for neural networks

nominal features are usually represented using a 7-hot encoding
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ordinal features can be represented using a thermometer encoding
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real-valued features can be represented using individual input units (we
may want to scale/normalize them first though)

precipitation =] 0.68 | O@ .



Output encoding for neural networks

regression tasks usually use output units with linear transfer functions

e

binary classification tasks usually use one sigmoid output unit

k-ary classification tasks usually use k sigmoid or softmax output units
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Recurrent neural networks

recurrent networks are sometimes used for tasks that involve making
sequences of predictions

« Elman networks: recurrent connections go from hidden units to inputs
« Jordan networks: recurrent connections go from output units to inputs

Hidden layer

Input layer

Output layer
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Recurrent Neural Networks (thanks Ed Choi, Jimeng Sun!)

* Recurrent Neural Network (RNN)
* Binary classification

h,= a(W.x,)
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Input x, X, (First element in the sequence “The”)




Recurrent Neural Networks

* Recurrent Neural Network (RNN)
* Binary classification

*
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Recurrent Neural Networks

* Recurrent Neural Network (RNN)
* Binary classification

*
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Recurrent Neural Networks

* Recurrent Neural Network (RNN)
* Binary classification

Output

y=a(w,'hy)

Outcome 0.0~ 1.0




Convention Wisdom of Last Decade

« Theorem: one hidden layer can represent any function
— Number of hidden units the one hyperparameter for ANNs
— Just tune that hyperparameter
— Fit well into Weka and other packages

« Empirical results: learning by backpropagation doesn't
work well with more than one hidden layer
— converge to poor solutions in practice

— gradients either vanish or exhibit poor credit assignment in
earlier hidden layers (those further from output, and hence
further from the error computation)
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Competing intuitions

* Only need a 2-layer network (input, hidden layer, output)

— Representation Theorem (1989): Using sigmoid activation
functions (more recently generalized to others as well), can
represent any continuous function with a single hidden layer

— Empirically, adding more hidden layers does not improve
accuracy, and it often degrades accuracy, when training by
standard backpropagation

« Deeper networks are better

— More efficient representationally, e.g., can represent n-variable
parity function with polynomially many (in n) nodes using multiple
hidden layers, but need exponentially many (in n) nodes when
limited to a single hidden layer

— More structure, should be able to construct more interesting

derived features
14



Learning representations

the feature representation provided is often the most
significant factor in how well a learning system works

an appealing aspect of multilayer neural networks is
that they are able to change the feature representation

can think of the nodes in the hidden layer as new
features constructed from the original features in the
iInput layer

consider having more levels of constructed features,
e.g., pixels -> edges -> shapes -> faces or other objects
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The role of hidden units

Hidden units transform the input space into a new space where
perceptrons suffice

They numerically represent “constructed” features
Consider learning the target function using the network structure below:

Inputs Outputs
Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001
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The role of hidden units

* In this task, hidden units learn a compressed numerical coding of the
inputs/outputs

Input Hidden Output
Values
10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001
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How many hidden units should be used?

conventional wisdom in the early days of neural nets: prefer small
networks because fewer parameters (i.e. weights & biases) will be
less likely to overfit

somewhat more recent wisdom: if early stopping is used, larger
networks often behave as if they have fewer “effective” hidden
units, and find better solutions
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Another way to avoid overfitting

« Allow many hidden units but force each hidden unit to
output mostly zeroes: tend to meaningful concepts

e Gradient descent solves an optimization problem—
add a “regularizing” term to the objective function

« Let X be vector of random variables, one for each
hidden unit, giving average output of unit over data
set. Let target distribution s have variables
independent with low probability of outputting one
(say 0.1), and let § be empirical distribution in the
data set. Add to the backpropagation target function
(that minimizes &’'s) a penalty of KL(s(X)||S(X))

19



Backpropagation with
multiple hidden layers

* in principle, backpropagation can be used to train arbitrarily deep
networks (i.e. with multiple hidden layers)

* in practice, this doesn’t usually work well
« there are likely to be lots of local minima
 diffusion of gradients leads to slow training in lower layers
« gradients are smaller, less pronounced at deeper levels

* errors in credit assignment propagate as you go back

20



First Approach to Turn Things Around:
Autoencoders

* one approach: use autoencoders to learn hidden-unit representations
* in an autoencoder, the network is trained to reconstruct the inputs

Layer L, Layer L;

Layer L, 21



Autoencoder variants

 how to encourage the autoencoder to generalize
» bottleneck: use fewer hidden units than inputs

» sparsity: use a penalty function that encourages most
hidden unit activations to be near O [Goodfellow
et al. 2009]

» denoising: train to predict true input from corrupted input
[Vincent et al. 2008]

» contractive: force encoder to have small derivatives (of
hidden unit output as input varies) [Rifai et al. 2011]
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Stacking Autoencoders

» can be stacked to form highly nonlinear representations
[Bengio et al. NIPS 2006]
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train autoencoder Discard output layer; discard output layer; train
to represent x train autoencoder weights on last layer for
to represent h, supervised task

Repeat for k layers

each W, here represents the matrix of weights between layers 23



Fine-Tuning

« After completion, run backpropagation on the entire

network to fine-tune weights for the supervised
task

« Because this backpropagation starts with good
structure and weights, its credit assignment is
better and so its final results are better than if we
just ran backpropagation initially

24



Autoencoders  (thanks Ed Choi, Jimeng Sun!)

* Compression & decompression
* Learning the latent representation of a given sample x

256 X 256 dimensions 128 dimensions 256 X 256 dimensions

0.1
0.2

0.4
» 15

Compression 21
0.2

Decompression




Autoencoders

* Compression & decompression
* Learning the latent representation of a given sample x

100K dimensions 128 dimensions 100K dimensions
0 0
patient 0 0.1 0
0 - 0
knee >1 0.4 1
0 1.5 0
0 . 0
0 . 2.1 . 0
Compression ' Decompression
i — 1 0.2 1
pain )
0 0
0 0




Autoencoders

* Compression & decompression
* Learning the latent representation of a given sample x
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Autoencoders

* Compression & decompression
* Learning the latent representation of a given sample x

X 1ndu
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Encoding

z =o0(Wx +b)
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Autoencoders

* Compression & decompression
* Learning the latent representation of a given sample x

X 1ndu
Z 9p0o) Juae]
XindinQ

Decoding
x' =0 (W'z+Db')
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Autoencoders

* Compression & decompression
* Learning the latent representation of a given sample x

» »
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Minimize reconstruction error
L(x,x") =[x —x|?
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Denoising Autoencoders

e Corrupt the input sample x
* To learn a robust representation of x
* The model strives to learn the joint probability of the dimensions of x
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Denoising Autoencoders

e Corrupt the input sample x
* To learn a robust representation of x
* The model strives to learn the joint probability of the dimensions of x
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Minimize reconstruction error
L(x, %)= |x -



Why does the unsupervised training step
work well?

* reqularization hypothesis: representations that are
good for P(x) are good for P(y | x)

* optimization hypothesis: unsupervised
initializations start near better local minima of
supervised training error
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Deep learning not limited to
neural networks

* First developed by Geoff Hinton and colleagues for
belief networks, a kind of hybrid between neural
nets and Bayes nets

« Hinton motivates the unsupervised deep learning
training process by the credit assignment problem,
which appears in belief nets, Bayes nets, neural
nets, restricted Boltzmann machines, etc.

» d-separation: the problem of evidence at a converging
connection creating competing explanations

» backpropagation: can’t choose which neighbors get the
blame for an error at this node

34



The Next Big Shift that Happened

 many then argued unsupervised pre-training phase
not really needed...

» backprop is sufficient if done better

— wider diversity in initial weights, try with many initial settings
until you get learning

— don’t worry much about exact learning rate, but add

momentum: if moving fast in a given direction, keep it up for
awhile

— Need a lot of data for deep net backprop

35



Problems with Backprop for Deep Neural
Networks

» OQOverfits both training data and the particular starting
point

« Converges too quickly to a suboptimal solution, even
with SGD (gradient from one example or “minibatch”
of examples at one time)

* Need more training data and/or fewer weights to
estimate, or other regularizer

36



Trick 1: Data Augmentation

* Deep learning depends critically on “Big Data” — need
many more training examples than features

« Turn one positive (negative) example into many
positive (negative) examples

* Image data: rotate, re-scale, or shift image, or flip
Image about axis; image still contains the same
objects, exhibits the same event or action

37



Trick 2: Parameter (Weight) Tying

Normally all neurons at one layer are connected to
next layer

Instead, have only n features feed to one specific
neuron at next level (e.g., 4 or 9 pixels of image go to
one hidden unit summarizing this “super-pixel”)

Tie the 4 (or 9) input weights across all super-
pixels... more data per weight

Here weight matrix W notation especially useful

38



Weight Tying Example: Convolution

Have a sliding window (e.g., square of 4 pixels, set of
5 consecutive items in a sequence, etc), and only the
neurons for these inputs feed into one neuron, N1, at
the next layer

Slide this window over by some amount and repeat,
feeding into another neuron, N2, etc.

Tie the input weights for N1, N2, etc., so they will all
learn the same concept (e.g., diagonal edge)

Repeat into new neurons N1°, N2', etc., to learn other
concepts. 39



Alternate Convolutional Layer with Pooling
Layer

 Mean pooling: k nodes (e.g., corresponding to 4
pixels constituting a square in an image) are
averaged to create one node (e.g., corresponding to
one pixel) at the next layer.

 Max pooling: replace average with maximum

 Max pooling is like OR... true if the pattern appears
anywhere in image; Min pooling is like AND.
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Used in Convolutional Neural Networks for Vision
Applications

Input layer
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41



Convolutional Neural Networks (CNN)

* What makes a dog a dog?




Convolutional Neural Networks (CNN)

* What makes a dog a dog?
* Focus on the local features, build up global features

Black eye

Furry ear

Black nose

Pink tongue




Convolution Operator (Already Learned)

44



Convolution Operator (Already Learned)

W:

45



Convolution Operator (Already Learned)

46



Convolution Operator (Already Learned)

1 0
2
0 1
0 1 1 0
|
1 0 0 1
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Convolution Operator (Already Learned)

48



Convolution Operator (Already Learned)

1 1
2 1 2
0 1
0 1 1 0
v+ |
1 0 0 1
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Convolution Operator (Already Learned)

1| o0

2 | 1| 2
0o | 1 1
1] 0

L S|
0 | 1
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Convolution Operator (Already Learned)

51



Convolution Operator (Already Learned)

52



Convolution Operator (Already Learned)

1 1 1 0
2 1 2
0 1 0 1 1 5 0
1
0 0
+ |
0 1
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Convolution Operator (Already Learned)

1 1 1 0
2 1 2
0 1 0 1 1 5 0
0 1
+ |

54



Convolution Operator (Already Learned)

1 1 1 0
2 1 2
0 1 0 1 1 5 0
0 o | 1| 2
v il

95



Notes

Repeating twice more and max pooling would yield
an 8, which tells us there is a continuous diagonal
edge (if we assume “1” is a darkened pixel)

Many ways to define how to handle boundary
cases... we ignored them (threw them away)

We used a 2x2 span and a stride of 1 (overlapping)...
what would stride of 2 give us?

We didn’t /learn the window template w (pattern or
channel); we might even want to learn more than one

56



Same as Discrete Mathematical Convolution
(Thanks to Yingyu Liang!)

* Given array u; and wy, their convolution is a function s;

+00

St = Z UagWi—a

a=—0oco

 Written as

s=w=xw) or s;=(@Wu*w);

* When u; or w; is not defined, assumed to be 0

Y



To Learn Convolution

Choose span and stride

Choose how to handle boundaries (e.g., padding)

Choose how many window patterns (channels)

For each channel, and for each overlay on input:

— create a hidden unit

— tie units for the same pattern across different locations
together -- their input weights will all agree (though their
inputs will not)

58



Convolutional Neural Networks (CNN)

* Focus on the local features, build up global features
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Convolutional Neural Networks

Input : Image input
M Conv . Convolutional layer
& | M ling |
5 ) 0 o . 2
3118 |18 o g o o = 5’ Pool | : Max-pooling layer
= < < 2 < = &
2 FC : Fully-connected layer
I_ = = — 5y = vy
2 2 2 < 2 2 2 Softmax  : Softmax laver
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AlexNet: Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks.”, NIPS 2012
VGGNet: Karen Simonyan, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition.”, ICLR 2015



Convolutional neural nets

« well suited to tasks in which the input has spatial structure, such
as images or sequences

« based on four key ideas
* local receptive fields
» weight sharing
* pooling
« multiple layers of hidden units



Convolutional neural nets

« suppose we have a task in which are instances are 28 x 28
pixel images
* we can represent each using 28 x 28 input units

input neurons

0000000000000 000000000000000
0000000000000 000000000000000
0000000000000 000000000000000
000000000000 0C000000000000000
0000000000000 000000000000000
000000000000 0C000000000000000
000000000000 0000000000000000
000000000000 C000000000000000
000000000000 00000000000000
000000000000 0000000000000
0000000000000 00000000000
OOOOOOOOOOOOOOOOOOOOOOOO
000000000000 000000000000
0000000000000 0000000000
000000000000 00000000000
000000000000 0000000000
0000000000 00000000
000000000000 000000
000000000000000000
0000000000000 00000
0000000000 00000000
000000000000 0000000
00000000000000000000
000000000000 0000000000
00000000000000000000000
000000000000 00000000000
000000000000000000000000
000000000000000000000000

ole)
0000
0000
0000
0000
0000
000
00

00
00
00
(o]0)
00
00
00
O 00
O Q0
(o] (e]e)
O 00
O 00
O 00
o (o]0
O 00
o 00
00
(e]e)
00
00

O
O
o]
o
o]
0
O
O
o]
0
o]
0
o]
O
o]
O
o]
0
o

[Figure from neuralnetworksanddeeplearning.com]



Convolutional neural nets

e we can connect hidden units so that each has a local receptive
field (e.g. a 5 X 5 patch of the image).

input neurons

00000 hidden neuron
00000

s ‘<

O v
00000

[Figure from neuralnetworksanddeeplearning.com]



Convolutional neural nets

input neurons

00000 first hidden layer
- we can have a set of these £33 =0 |
units that differ in their local
receptive field
« all of the units share the
same set of weights
* so the units detect same
“feature” in the image, but
at different locations .
99990« cqRg0000000¢ first hidden layer

[Figure from neuralnetworksanddeeplearning.com]



Convolutional neural nets

 a set of units that detect the same “feature” is called a feature map
« typically we'll have multiple feature maps in each layer

28 x 28 input neurons first hidden layer: 3 x 24 x 24 neurons

—d

—

[Figure from neuralnetworksanddeeplearning.com]



Convolutional neural nets

» feature-map layers are typically alternated with pooling layers

« each unit in a pooling layer outputs a max, or similar function, of a
subset of the units in the previous layer

hidden neurons (output from feature map) f(x) —_ max(xl xl

max-pooling units

Q0
(o]

O

flx) = logz e’

[Figure from neuralnetworksanddeeplearning.com]



Convolutional neural nets

« alternating layers of convolutional and pooling layers can be stacked

P G - gV P g - EEE W A N g gy @ @ G g g @ o g gV & i - g g g g g & & V- gy g & - g g g g

Convolutions and ReLU
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Max pooling

Convolutions and ReLU
B - -

Max pooling

[Figure from LeCun et al., Nature 2015]



Trick 3: Alternative Activations

« tanh: (e?*-1)/(e?*+1)

« RelLU: max(0,x) or In(1+¢e¥)

hyperbolic tangent
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rectified linear unit or
softplus

Norvinedrides

Plot of the rectifier (blue) and softplus
(green) functions near x =0
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Trick 4: Alternative Error Function

 Example: Cross-entropy

1
C=-— Z [yIno + (1 —y)In(1 —0)]
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Trick 5: Dropout Training

e Build some redundancy into the hidden units

« Essentially create an “ensemble” of neural networks,
but without high cost of training many deep networks

* Dropout training...

70



Dropout training

* On each training iteration, drop out (ignore) 50% of the
units (or other 90%, or other) by forcing output to 0 during
forward pass

 Ignore for forward & backprop (all training)
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(a) Standard Neural Net (b) After applying dropout.
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Figures from Srivastava et al., Journal of Machine Learning Research 2014



At Test Time

 Final model uses all nodes

« Multiply each weight from a node by fraction of times node
was used during training

W PW
Present with Always
probability p present

(a) At training time (b) At test time

Figures from Srivastava et al., Journal of Machine Learning Research 2014
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Trick 6: Batch Normalization

 If outputs of earlier layers change greatly on one
round for one mini-batch, then neurons at next levels

can’t keep up: they output all high (or all low) values

* Next layer doesn’t have ability to change its outputs
with learning-rate-sized changes to its input weights

* We say the layer has “saturated”

73



Another View of Problem

* In ML, we assume future data will be drawn from
same probability distribution as training data

« For a hidden unit, after training, the earlier layers
have new weights and hence generate input data for
this hidden unit from a new distribution

 Want to reduce this internal covariate shift for the
benefit of later layers

74



Input: Values of x over a mini-batch: B = {x1._.»};
Parameters to be learned: v, 3
Output: {y; = BN, 5(z;)}

1 « .
B — — Z X; // mini-batch mean
m
1=1
1 « . .
0 — Z(:Ez — ug)? // mini-batch variance
1=1
~ Li — :
T; 4 i BB // normalize
\/ 0123 + €

Y; < vx; + 8 = BN, g(x;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch. 75




* On forward pass
— Process each layer one at a time

— Each input to each neuron (activation) on each minibatch has its
own u and o

— Each input to each neuron (regardless of minibatch) has its own y
and f (shared across all minibatches)

« On backpropagation

— Each y and B are just two additional parameters in gradient, feeding
into a non-linear activation such as a ReLU or Sigmoid

— Ina CNN, we tie all ys across an entire layer or a feature map, e.g.,
upper left corner of a 2x2 sliding window, (and same for 5, u and o)

« At Test Time (usage time), use the trained y and 5. u and o
are averaged over all minibatches, or as written here:

~

V= Fr (8- )




Comments on Batch Normalization

* First three steps are just like standardization of input
data, but with respect to only the data in mini-batch.
Can take derivative and incorporate the learning of
last step parameters into backpropagation.

* Note last step can completely un-do previous 3 steps

« But if so this un-doing is driven by the later layers, not
the earlier layers; later layers get to “choose” whether
they want standard normal inputs or not
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