
Deep Learning I

CS 760: Machine Learning
Spring 2018

Mark Craven and David Page

www.biostat.wisc.edu/~craven/cs760

1

Goals for the Lecture

• You should understand the following concepts:

– one-hot encoding
– autoencoders
– denoising autoencoders
– recurrent neural networks
– convolutional neural networks
– parameter tying
– pooling
– dropout training
– batch normalization
– Nesterov momentum

2

Wrapping Up Last Time: Initializing weights

• Weights should be initialized to
• small values so that the sigmoid activations are in the range

where the derivative is large (learning will be quicker)

• random values to ensure symmetry breaking (i.e. if all weights
are the same, the hidden units will all represent the same thing)

• typical initial weight range [-0.01, 0.01]
3

Setting the learning rate

η too large (error goes up)

η too small (error goes down
a little)

−
∂E
∂wij

wij

Er
ro

r
convergence depends on having an appropriate learning rate

4

Stopping criteria
• conventional gradient descent: train until local minimum reached

• empirically better approach: early stopping
• use a validation set to monitor accuracy during training iterations
• return the weights that result in minimum validation-set error

error

training iterations

stop training here

5

Input (feature) encoding for neural networks

nominal features are usually represented using a 1-hot encoding

A =

1
0
0
0

!

"

#
#
#
#

$

%

&
&
&
&

C =

0
1
0
0

!

"

#
#
#
#

$

%

&
&
&
&

G =

0
0
1
0

!

"

#
#
#
#

$

%

&
&
&
&

T =

0
0
0
1

!

"

#
#
#
#

$

%

&
&
&
&

ordinal features can be represented using a thermometer encoding

small =
1
0
0

!

"

#
#
#

$

%

&
&
&

medium =
1
1
0

!

"

#
#
#

$

%

&
&
&

large =
1
1
1

!

"

#
#
#

$

%

&
&
&

 precipitation = 0.68[]

real-valued features can be represented using individual input units (we
may want to scale/normalize them first though)

6

Output encoding for neural networks

regression tasks usually use output units with linear transfer functions

binary classification tasks usually use one sigmoid output unit

k-ary classification tasks usually use k sigmoid or softmax output units

oi =
eneti

enet j
j∈outputs
∑

7

Recurrent neural networks

recurrent networks are sometimes used for tasks that involve making
sequences of predictions
• Elman networks: recurrent connections go from hidden units to inputs
• Jordan networks: recurrent connections go from output units to inputs

8

Recurrent	Neural	Networks	(thanks	Ed	Choi,	Jimeng Sun!)

• Recurrent	Neural	Network	(RNN)
• Binary	classification

Hidden	Layer	h
1

h1=	𝝈(Wi
Tx1)	

Input	x1 x1 (First	element	in	the	sequence	“The”)

Recurrent	Neural	Networks

• Recurrent	Neural	Network	(RNN)
• Binary	classification

h
2

x2

h
1

x1

h2=	𝝈(Wh
Th1 +Wi

Tx2)	

“The” “patient”

Recurrent	Neural	Networks

• Recurrent	Neural	Network	(RNN)
• Binary	classification

h
9

h
10

h
2

x2 x9 x10

h
1

x1

h10=	𝝈(Wh
Th9 +Wi

Tx10)	

“The” “patient” “knee” “.”

Recurrent	Neural	Networks

• Recurrent	Neural	Network	(RNN)
• Binary	classification

Output

𝑦# =	𝝈(wo
Th10)

Outcome	0.0	~	1.0

h
9

h
10

h
2

x2 x9 x10

h
1

x1

wo
Wh

Wi

Convention Wisdom of Last Decade

• Theorem: one hidden layer can represent any function
– Number of hidden units the one hyperparameter for ANNs
– Just tune that hyperparameter
– Fit well into Weka and other packages

• Empirical results: learning by backpropagation doesn’t
work well with more than one hidden layer
– converge to poor solutions in practice
– gradients either vanish or exhibit poor credit assignment in

earlier hidden layers (those further from output, and hence
further from the error computation)

13

Competing intuitions

• Only need a 2-layer network (input, hidden layer, output)
– Representation Theorem (1989): Using sigmoid activation

functions (more recently generalized to others as well), can
represent any continuous function with a single hidden layer

– Empirically, adding more hidden layers does not improve
accuracy, and it often degrades accuracy, when training by
standard backpropagation

• Deeper networks are better
– More efficient representationally, e.g., can represent n-variable

parity function with polynomially many (in n) nodes using multiple
hidden layers, but need exponentially many (in n) nodes when
limited to a single hidden layer

– More structure, should be able to construct more interesting
derived features

14

Learning representations

• the feature representation provided is often the most
significant factor in how well a learning system works

• an appealing aspect of multilayer neural networks is
that they are able to change the feature representation

• can think of the nodes in the hidden layer as new
features constructed from the original features in the
input layer

• consider having more levels of constructed features,
e.g., pixels -> edges -> shapes -> faces or other objects

15

The role of hidden units

• Hidden units transform the input space into a new space where
perceptrons suffice

• They numerically represent “constructed” features
• Consider learning the target function using the network structure below:

16

The role of hidden units

• In this task, hidden units learn a compressed numerical coding of the
inputs/outputs

17

How many hidden units should be used?
• conventional wisdom in the early days of neural nets: prefer small

networks because fewer parameters (i.e. weights & biases) will be
less likely to overfit

• somewhat more recent wisdom: if early stopping is used, larger
networks often behave as if they have fewer “effective” hidden
units, and find better solutions

test set
error

training epochs

4 HUs

15 HUs

Figure from Weigend, Proc. of the CMSS 1993 18

Another way to avoid overfitting

• Allow many hidden units but force each hidden unit to
output mostly zeroes: tend to meaningful concepts

• Gradient descent solves an optimization problem—
add a “regularizing” term to the objective function

• Let X be vector of random variables, one for each
hidden unit, giving average output of unit over data
set. Let target distribution s have variables
independent with low probability of outputting one
(say 0.1), and let ŝ be empirical distribution in the
data set. Add to the backpropagation target function
(that minimizes δ’s) a penalty of KL(s(X)||ŝ(X))

19

Backpropagation with
multiple hidden layers

• in principle, backpropagation can be used to train arbitrarily deep
networks (i.e. with multiple hidden layers)

• in practice, this doesn’t usually work well

• there are likely to be lots of local minima

• diffusion of gradients leads to slow training in lower layers

• gradients are smaller, less pronounced at deeper levels

• errors in credit assignment propagate as you go back

20

First Approach to Turn Things Around:
Autoencoders

• one approach: use autoencoders to learn hidden-unit representations
• in an autoencoder, the network is trained to reconstruct the inputs

21

Autoencoder variants

• how to encourage the autoencoder to generalize

• bottleneck: use fewer hidden units than inputs

• sparsity: use a penalty function that encourages most
hidden unit activations to be near 0 [Goodfellow
et al. 2009]

• denoising: train to predict true input from corrupted input
[Vincent et al. 2008]

• contractive: force encoder to have small derivatives (of
hidden unit output as input varies) [Rifai et al. 2011]

22

Stacking Autoencoders
• can be stacked to form highly nonlinear representations

[Bengio et al. NIPS 2006]

train autoencoder
to represent x

Discard output layer;
train autoencoder
to represent h1

Repeat for k layers

discard output layer; train
weights on last layer for
supervised task

each Wi here represents the matrix of weights between layers 23

Fine-Tuning

• After completion, run backpropagation on the entire
network to fine-tune weights for the supervised
task

• Because this backpropagation starts with good
structure and weights, its credit assignment is
better and so its final results are better than if we
just ran backpropagation initially

24

Autoencoders (thanks	Ed	Choi,	Jimeng Sun!)

• Compression	&	decompression
• Learning	the	latent	representation	of	a	given	sample	x

0.1
0.2
-
0.4
1.5
-
2.1
0.2
…
…

256	X	256	dimensions 128	dimensions 256	X	256	dimensions

Compression Decompression

Autoencoders

• Compression	&	decompression
• Learning	the	latent	representation	of	a	given	sample	x

0.1
0.2
-
0.4
1.5
-
2.1
0.2
…
…

100K	dimensions 128	dimensions

Compression Decompression

0
0
1
0
1
0
0
0
1
0
0
…
…

patient

knee

pain

100K	dimensions

0
0
1
0
1
0
0
0
1
0
0
…
…

Autoencoders

• Compression	&	decompression
• Learning	the	latent	representation	of	a	given	sample	x

Latent	Code	z

Input	x

O
utput	x’

Autoencoders

• Compression	&	decompression
• Learning	the	latent	representation	of	a	given	sample	x

Latent	Code	z

Input	x

O
utput	x’

Encoding

Autoencoders

• Compression	&	decompression
• Learning	the	latent	representation	of	a	given	sample	x

Latent	Code	z

Input	x

O
utput	x’

Decoding

Autoencoders

• Compression	&	decompression
• Learning	the	latent	representation	of	a	given	sample	x

Latent	Code	z

Input	x

O
utput	x’

Minimize	reconstruction	error

Denoising Autoencoders

• Corrupt	the	input	sample	x
• To	learn	a	robust	representation	of	x
• The	model	strives	to	learn	the	joint	probability	of	the	dimensions	of	x

Latent	Code	z

Input	x

O
utput	𝐱 %’

Corrupted	input	𝐱 %
Random	corruption

Denoising Autoencoders

• Corrupt	the	input	sample	x
• To	learn	a	robust	representation	of	x
• The	model	strives	to	learn	the	joint	probability	of	the	dimensions	of	x

Latent	Code	z

Input	x

O
utput	𝐱 %’

Corrupted	input	𝐱 %

Minimize	reconstruction	error
~~

Why does the unsupervised training step
work well?

• regularization hypothesis: representations that are
good for P(x) are good for P(y | x)

• optimization hypothesis: unsupervised
initializations start near better local minima of
supervised training error

33

Deep learning not limited to
neural networks

• First developed by Geoff Hinton and colleagues for
belief networks, a kind of hybrid between neural
nets and Bayes nets

• Hinton motivates the unsupervised deep learning
training process by the credit assignment problem,
which appears in belief nets, Bayes nets, neural
nets, restricted Boltzmann machines, etc.
• d-separation: the problem of evidence at a converging

connection creating competing explanations
• backpropagation: can’t choose which neighbors get the

blame for an error at this node

34

The Next Big Shift that Happened

• many then argued unsupervised pre-training phase
not really needed…

• backprop is sufficient if done better
– wider diversity in initial weights, try with many initial settings

until you get learning
– don’t worry much about exact learning rate, but add

momentum: if moving fast in a given direction, keep it up for
awhile

– Need a lot of data for deep net backprop

35

Problems with Backprop for Deep Neural
Networks

• Overfits both training data and the particular starting
point

• Converges too quickly to a suboptimal solution, even
with SGD (gradient from one example or “minibatch”
of examples at one time)

• Need more training data and/or fewer weights to
estimate, or other regularizer

36

Trick 1: Data Augmentation

• Deep learning depends critically on “Big Data” – need
many more training examples than features

• Turn one positive (negative) example into many
positive (negative) examples

• Image data: rotate, re-scale, or shift image, or flip
image about axis; image still contains the same
objects, exhibits the same event or action

37

Trick 2: Parameter (Weight) Tying

• Normally all neurons at one layer are connected to
next layer

• Instead, have only n features feed to one specific
neuron at next level (e.g., 4 or 9 pixels of image go to
one hidden unit summarizing this “super-pixel”)

• Tie the 4 (or 9) input weights across all super-
pixels… more data per weight

• Here weight matrix W notation especially useful

38

Weight Tying Example: Convolution

• Have a sliding window (e.g., square of 4 pixels, set of
5 consecutive items in a sequence, etc), and only the
neurons for these inputs feed into one neuron, N1, at
the next layer

• Slide this window over by some amount and repeat,
feeding into another neuron, N2, etc.

• Tie the input weights for N1, N2, etc., so they will all
learn the same concept (e.g., diagonal edge)

• Repeat into new neurons N1’, N2’, etc., to learn other
concepts. 39

Alternate Convolutional Layer with Pooling
Layer

• Mean pooling: k nodes (e.g., corresponding to 4
pixels constituting a square in an image) are
averaged to create one node (e.g., corresponding to
one pixel) at the next layer.

• Max pooling: replace average with maximum

• Max pooling is like OR… true if the pattern appears
anywhere in image; Min pooling is like AND.

40

Used in Convolutional Neural Networks for Vision
Applications

41

image3_en.png (PNG Image, 416 × 228 pixels) http://masters.donntu.org/2012/fknt/umiarov/diss/images/image3_en.png

1 of 1 2/26/17 4:02 PM

Convolutional	Neural	Networks	(CNN)

• What	makes	a	dog	a	dog?

Convolutional	Neural	Networks	(CNN)

• What	makes	a	dog	a	dog?
• Focus	on	the	local	features,	build	up	global	features

Furry	ear

Black	eye

Black	nose

Pink	tongue

Convolution Operator (Already Learned)

44

u:

w:
1

1

1

1 1

11

1

1

1 10

00

0

0 0

0

0

0

Convolution Operator (Already Learned)

45

u:

w:
1

1

1

1

11

1

1

1 0

00

0

0 0

0

1

1 0

0

Convolution Operator (Already Learned)

46

u:

1

1

1

1

11

1

1

1 0

00

0

0 0

0

Convolution Operator (Already Learned)

47

u:

1

1

1

1

11

1

1

1 0

00

0

0 0

0

2

Convolution Operator (Already Learned)

48

u:

1

1

1

1

11

1

1

1 0

00

0

0 0

0

2 1

Convolution Operator (Already Learned)

49

u:

1

1

1

1

11

1

1

1 0

00

0

0 0

0

2 1 2

Convolution Operator (Already Learned)

50

u:

1

1

1

1

11

1

1

1 0

00

0

0 0

0

2 1 2

1

Convolution Operator (Already Learned)

51

u:

1

1

1

1

11

1

1

1 0

00

0

0 0

0

2 1 2

1 2

Convolution Operator (Already Learned)

52

u:

1

1

1

1

11

1

1

1 0

00

0

0 0

0

2 1 2

1 2 0

Convolution Operator (Already Learned)

53

u:

1

1

1

1

11

1

1

1 0

00

0

0 0

0

2 1 2

1 2 0

0

Convolution Operator (Already Learned)

54

u:

1

1

1

1

11

1

1

1 0

00

0

0 0

0

2 1 2

1 2 0

0 1

Convolution Operator (Already Learned)

55

u:

1

1

1

1

11

1

1

1 0

00

0

0 0

0

2 1 2

1 2 0

0 1 2

Notes

• Repeating twice more and max pooling would yield
an 8, which tells us there is a continuous diagonal
edge (if we assume “1” is a darkened pixel)

• Many ways to define how to handle boundary
cases… we ignored them (threw them away)

• We used a 2x2 span and a stride of 1 (overlapping)…
what would stride of 2 give us?

• We didn’t learn the window template w (pattern or
channel); we might even want to learn more than one

56

Same as Discrete Mathematical Convolution
(Thanks to Yingyu Liang!)

57

To Learn Convolution

• Choose span and stride

• Choose how to handle boundaries (e.g., padding)

• Choose how many window patterns (channels)

• For each channel, and for each overlay on input:

– create a hidden unit

– tie units for the same pattern across different locations
together -- their input weights will all agree (though their
inputs will not)

58

Convolutional Neural Networks (CNN)

• Focus on the local features, build up global features

Convolutional Neural Networks

AlexNet:	Alex	Krizhevsky,	Ilya	Sutskever,	and	Geoffrey	E.	Hinton.	"Imagenet classification	with	deep	convolutional	neural	networks.”,	NIPS	2012
VGGNet:	Karen	Simonyan,	and	Andrew	Zisserman.	"Very	deep	convolutional	networks	for	large-scale	image	recognition.”,	ICLR	2015

Convolutional neural nets
• well suited to tasks in which the input has spatial structure, such

as images or sequences

• based on four key ideas
• local receptive fields
• weight sharing
• pooling
• multiple layers of hidden units

Convolutional neural nets
• suppose we have a task in which are instances are 28 ×	28

pixel images
• we can represent each using 28 ×	28 input units

[Figure from neuralnetworksanddeeplearning.com]

Convolutional neural nets
• we can connect hidden units so that each has a local receptive

field (e.g. a 5 ×	5 patch of the image).

[Figure from neuralnetworksanddeeplearning.com]

Convolutional neural nets

• we can have a set of these
units that differ in their local
receptive field

• all of the units share the
same set of weights

• so the units detect same
“feature” in the image, but
at different locations

[Figure from neuralnetworksanddeeplearning.com]

Convolutional neural nets

• a set of units that detect the same “feature” is called a feature map
• typically we’ll have multiple feature maps in each layer

[Figure from neuralnetworksanddeeplearning.com]

Convolutional neural nets
• feature-map layers are typically alternated with pooling layers
• each unit in a pooling layer outputs a max, or similar function, of a

subset of the units in the previous layer

𝑓𝑓 𝒙 = 𝑙𝑜𝑔.𝑒01
�

3

𝑓𝑓 𝒙 = .𝑥35
�

3

�

𝑓𝑓 𝒙 = 	𝑚𝑎𝑥 𝑥8 …𝑥3 …

[Figure from neuralnetworksanddeeplearning.com]

Convolutional neural nets
• alternating layers of convolutional and pooling layers can be stacked

[Figure from LeCun et al., Nature 2015]

Trick 3: Alternative Activations

• tanh: (e2x-1)/(e2x+1) hyperbolic tangent

• ReLU: max(0,x) or ln(1+ex) rectified linear unit or
softplus

68

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index

Interactive Entries

Random Entry

New in MathWorld

MathWorld Classroom

About MathWorld

Contribute to MathWorld

Send a Message to the Team

MathWorld Book

Wolfram Web Resources »

13,612 entries
Last updated: Fri Feb 24 2017

Created, developed, and
nurtured by Eric Weisstein
at Wolfram Research

Calculus and Analysis > Special Functions > Hyperbolic Functions >
Interactive Entries > webMathematica Examples >
Interactive Entries > Interactive Demonstrations >

Hyperbolic Tangent

Min -5 Max 5 Replot

Min Max

Re -5 5

Im -5 5 Replot

By way of analogy with the usual tangent

(1)

the hyperbolic tangent is defined as

(2)

(3)

(4)

where is the hyperbolic sine and is the hyperbolic cosine. The notation is sometimes also used
(Gradshteyn and Ryzhik 2000, p. xxix).

 is implemented in the Wolfram Language as Tanh[z].

Special values include

(5)
(6)

where is the golden ratio.

The derivative of is

(7)

and higher-order derivatives are given by

(8)

Derivatives of Trig and
Hyperbolic Functions
Itsaso Aranzabal

Search MathWorld

inverse hyperbolic tangent of x

THINGS TO TRY:

inverse hyperbolic tangent of x

inverse hyperbolic tangent of .99

d/dx hyperbolic tangent(x)

Hyperbolic Tangent -- from Wolfram MathWorld http://mathworld.wolfram.com/HyperbolicTangent.html

1 of 2 2/26/17 3:47 PM

Plot of the rectifier (blue) and softplus
(green) functions near x = 0

Rectifier (neural networks)
From Wikipedia, the free encyclopedia

In the context of artificial neural networks, the rectifier is an
activation function defined as

where x is the input to a neuron. This is also known as a ramp
function and is analogous to half-wave rectification in electrical
engineering. This activation function was first introduced to a
dynamical network by Hahnloser et al. in a 2000 paper in Nature[1]

with strong biological motivations and mathematical justifications.[2]

It has been used in convolutional networks[3] more effectively than
the widely used logistic sigmoid (which is inspired by probability
theory; see logistic regression) and its more practical[4] counterpart,
the hyperbolic tangent. The rectifier is, as of 2015, the most popular activation function for deep neural
networks.[5]

A unit employing the rectifier is also called a rectified linear unit (ReLU).[6]

A smooth approximation to the rectifier is the analytic function

which is called the softplus function.[7] The derivative of softplus is
, i.e. the logistic function.

Rectified linear units find applications in computer vision[3] and speech recognition[8][9] using deep neural
nets.

Contents
1 Variants

1.1 Noisy ReLUs
1.2 Leaky ReLUs
1.3 ELUs

2 Advantages
3 Potential problems
4 See also
5 References

Variants

Rectifier (neural networks) - Wikipedia https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

1 of 4 2/26/17 3:57 PM

Trick 4: Alternative Error Function

• Example: Cross-entropy

69

We can see from this graph that when the neuron's output is close
to , the curve gets very flat, and so gets very small. Equations
(55) and (56) then tell us that and get very small. This
is the origin of the learning slowdown. What's more, as we shall see
a little later, the learning slowdown occurs for essentially the same
reason in more general neural networks, not just the toy example
we've been playing with.

Introducing the cross-entropy cost function

How can we address the learning slowdown? It turns out that we
can solve the problem by replacing the quadratic cost with a
different cost function, known as the cross-entropy. To understand
the cross-entropy, let's move a little away from our super-simple toy
model. We'll suppose instead that we're trying to train a neuron
with several input variables, , corresponding weights

, and a bias, :

The output from the neuron is, of course, , where
 is the weighted sum of the inputs. We define the

cross-entropy cost function for this neuron by

1 (z)σ ′

∂C/∂w ∂C/∂b

, , …x1 x2

, , …w1 w2 b

a = σ(z)
z = + b∑j wjxj

C = − [y ln a + (1 −y) ln(1 −a)] ,1
n ∑

x
(57)

-4 -3 -2 -1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

z

sigmoid function

Neural networks and deep learning http://neuralnetworksanddeeplearning.com/chap3.html#the_cross-en...

5 of 99 2/26/17 4:06 PM

o o

Trick 5: Dropout Training

• Build some redundancy into the hidden units

• Essentially create an “ensemble” of neural networks,
but without high cost of training many deep networks

• Dropout training…

70

Dropout training

• On each training iteration, drop out (ignore) 50% of the
units (or other 90%, or other) by forcing output to 0 during
forward pass

• Ignore for forward & backprop (all training)

71

Dropout

On each training iteration
–  randomly “drop out” a subset of the units and their weights
–  do forward and backprop on remaining network

Figures from Srivastava et al., Journal of Machine Learning Research 2014

Dropout

At test time
–  use all units and weights in the network
–  adjust weights according to the probability that the source unit

was dropped out

Figures from Srivastava et al., Journal of Machine Learning Research 2014

At Test Time

• Final model uses all nodes
• Multiply each weight from a node by fraction of times node

was used during training

72

Dropout

On each training iteration
–  randomly “drop out” a subset of the units and their weights
–  do forward and backprop on remaining network

Figures from Srivastava et al., Journal of Machine Learning Research 2014

Dropout

At test time
–  use all units and weights in the network
–  adjust weights according to the probability that the source unit

was dropped out

Figures from Srivastava et al., Journal of Machine Learning Research 2014

Trick 6: Batch Normalization

• If outputs of earlier layers change greatly on one
round for one mini-batch, then neurons at next levels
can’t keep up: they output all high (or all low) values

• Next layer doesn’t have ability to change its outputs
with learning-rate-sized changes to its input weights

• We say the layer has “saturated”

73

Another View of Problem

• In ML, we assume future data will be drawn from
same probability distribution as training data

• For a hidden unit, after training, the earlier layers
have new weights and hence generate input data for
this hidden unit from a new distribution

• Want to reduce this internal covariate shift for the
benefit of later layers

74

75

Batch Normalization

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: �, �

Output: {yi = BN�,�(xi)}

µB
1

m

mX

i=1

xi // mini-batch mean

�2
B

1

m

mX

i=1

(xi � µB)
2 // mini-batch variance

bxi
xi � µBp
�2
B + ✏

// normalize

yi �bxi + � ⌘ BN�,�(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

shifted values y are passed to other network layers. The
normalized activations bx are internal to our transformation,
but their presence is crucial. The distributions of values
of any bx has the expected value of 0 and the variance of
1, as long as the elements of each mini-batch are sampled
from the same distribution, and if we neglect ✏. This can be
seen by observing that

Pm
i=1 bxi = 0 and 1

m

Pm
i=1 bx2

i = 1,
and taking expectations. Each normalized activation bx(k)

can be viewed as an input to a sub-network composed of
the linear transform y(k) = �(k)bx(k) + �(k), followed by
the other processing done by the original network. These
sub-network inputs all have fixed means and variances, and
although the joint distribution of these normalized bx(k) can
change over the course of training, we expect that the intro-
duction of normalized inputs accelerates the training of the
sub-network and, consequently, the network as a whole.

During training we need to backpropagate the gradient of
loss ` through this transformation, as well as compute the
gradients with respect to the parameters of the BN trans-
form. We use chain rule, as follows:

@`
@bxi

= @`
@yi

· �
@`
@�2

B
=

Pm
i=1

@`
@bxi

· (xi � µB) · �1
2 (�2

B + ✏)�3/2

@`
@µB

=
Pm

i=1
@`
@bxi

· �1p
�2
B+✏

@`
@xi

= @`
@bxi

· 1p
�2
B+✏

+ @`
@�2

B
· 2(xi�µB)

m + @`
@µB

· 1
m

@`
@� =

Pm
i=1

@`
@yi

· bxi

@`
@� =

Pm
i=1

@`
@yi

Thus, BN transform is a differentiable transformation that
introduces normalized activations into the network. This
ensures that as the model is training, layers can continue
learning on input distributions that exhibit less internal co-
variate shift, thus accelerating the training. Furthermore,

the learned affine transform applied to these normalized ac-
tivations allows the BN transform to represent the identity
transformation and preserves the network capacity.

3.1. Training and Inference with Batch-Normalized

Networks

To Batch-Normalize a network, we specify a subset of ac-
tivations and insert the BN transform for each of them, ac-
cording to Alg. 1. Any layer that previously received x
as the input, now receives BN(x). A model employing
Batch Normalization can be trained using batch gradient
descent, or Stochastic Gradient Descent with a mini-batch
size m > 1, or with any of its variants such as Adagrad
(Duchi et al., 2011). The normalization of activations that
depends on the mini-batch allows efficient training, but is
neither necessary nor desirable during inference; we want
the output to depend only on the input, deterministically.
For this, once the network has been trained, we use the
normalization

bx =
x� E[x]p
Var[x] + ✏

using the population, rather than mini-batch, statistics. Ne-
glecting ✏, these normalized activations have the same
mean 0 and variance 1 as during training. We use the unbi-
ased variance estimate Var[x] = m

m�1 · EB[�2
B], where the

expectation is over training mini-batches of size m and �2
B

are their sample variances. Using moving averages instead,
we can track the accuracy of a model as it trains. Since the
means and variances are fixed during inference, the nor-
malization is simply a linear transform applied to each ac-
tivation. It may further be composed with the scaling by
� and shift by �, to yield a single linear transform that re-
places BN(x). Algorithm 2 summarizes the procedure for
training batch-normalized networks.

3.2. Batch-Normalized Convolutional Networks

Batch Normalization can be applied to any set of activa-
tions in the network. Here, we focus on transforms that
consist of an affine transformation followed by an element-
wise nonlinearity:

z = g(Wu + b)

where W and b are learned parameters of the model, and
g(·) is the nonlinearity such as sigmoid or ReLU. This
formulation covers both fully-connected and convolutional
layers. We add the BN transform immediately before the
nonlinearity, by normalizing x = Wu + b. We could have
also normalized the layer inputs u, but since u is likely
the output of another nonlinearity, the shape of its distri-
bution is likely to change during training, and constraining
its first and second moments would not eliminate the co-
variate shift. In contrast, Wu + b is more likely to have
a symmetric, non-sparse distribution, that is “more Gaus-

• On forward pass
– Process each layer one at a time
– Each input to each neuron (activation) on each minibatch has its

own 𝜇 and 𝜎
– Each input to each neuron (regardless of minibatch) has its own 𝛾

and 𝛽 (shared across all minibatches)

• On backpropagation
– Each 𝛾 and 𝛽 are just two additional parameters in gradient, feeding

into a non-linear activation such as a ReLU or Sigmoid
– In a CNN, we tie all 𝛾s across an entire layer or a feature map, e.g.,

upper left corner of a 2x2 sliding window, (and same for 𝛽, 𝜇 and 𝜎)

• At Test Time (usage time), use the trained 𝛾 and 𝛽. 	𝜇 and 𝜎
are averaged over all minibatches, or as written here:

Comments on Batch Normalization

• First three steps are just like standardization of input
data, but with respect to only the data in mini-batch.
Can take derivative and incorporate the learning of
last step parameters into backpropagation.

• Note last step can completely un-do previous 3 steps

• But if so this un-doing is driven by the later layers, not
the earlier layers; later layers get to “choose” whether
they want standard normal inputs or not

77

