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Goals	for	the	lecture
you	should	understand	the	following	concepts

• Markov	networks
• Markov	network	syntax
• Markov	network	semantics
• Differences	between	Bayes	nets	and	Markov	nets
• Potential	functions
• Partition	function
• Loglinear formulation	of	MNs
• MN	parameter	learning	by	gradient	ascent
• Markov	chain	Monte	Carlo	(MCMC)	sampling
• Metropolis-Hastings
• Gibbs	sampling
• Persistent	contrastive	divergence	(PCD)
• Pseudo-likelihood
• Screening	rules
• Graphical	Lasso



Markov	Networks

• Like	Bayes	Nets
• Graphical	model	that	describes	joint	probability	distribution	using	tables	
(AKA	potentials)

• Nodes	are	random	variables
• Labels	are	outcomes	over	the	variables



Markov	Networks

• Unlike	Bayes	Nets
• Undirected	graph
• No	requirement	that	tables	need	not	be	conditional	distributions
• Table	distributed	over	complete	subgraph	



More	on	Potentials
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• Values	are	typically	
non-negative

• Values	need	not	be	
probabilities

• Generally,	one	table	
associated	with	each	
clique



Calculating	the	Full	Joint	Probability	Density

One	potential

Feature	vector	
(i.e.																		)

Normalization	
constant

• Full	Joint	Probability	Density	is	the	normalized	product	
of	the	event	probabilities



Calculating	the	Normalization	Constant	Z



Using
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• Get	probability	of	A=1,	
B=0,	C=1,	D=0,	E=0

• Only	need	potentials

• Multiply	entries	
consistent	with	this	
setting	
(3	x	3	=	9)



Hammersley-Clifford	Theorem

• If	Distribution	is	strictly	positive	(P(x)	>	0)
• And	Graph	encodes	conditional	independences
• Then	Distribution	is	product	of	potentials	over	cliques	of	graph

• Inverse	is	also	true

• (“Markov	network	=	Gibbs	distribution”)



Markov	Nets	versus	Bayes	Nets

• Disadvantages	of	Markov	Nets

• Computationally	intensive	to	compute	probability	of	any	complete	setting	of	
variables	with	Markov	Net	(NP-hard),	easy	for	Bayes	Net

• Hard	to	learn	Markov	Net	parameters	in	a	straightforward	way

• Can’t	just	use	marginal	frequencies	from	data	as	for	Bayes	nets

• Gradient	ascent	requires	inference	(hard)



Markov	Nets	versus	Bayes	Nets

• Advantages	of	Markov	Nets	

• Easier	to	reason	about	conditional	independence

• Markov	Blanket	is	just	set	of	neighbors

• d-separation:	conditional	independence	achieved	iff all	paths	cut	off	by	
evidence

• No	need	to	select	an	arbitrary,	potentially	misleading	direction	for	a	
dependency	in	cases	where	the	direction	is	unclear

• Learn	structure	just	by	learning	parameters



Markov	Nets	vs.	Bayes	Nets

Property Markov Nets Bayes Nets
Form Prod. potentials Prod. potentials
Potentials Arbitrary Cond. probabilities
Cycles Allowed Forbidden
Partition func. Z = ? Z = 1
Indep. check Graph separation D-separation
Indep. props. Some Some
Inference MCMC, BP, etc. Convert to Markov



Constructing	Markov	Nets

• Just	as	in	Bayes	Nets,	the	decision	of	which	tables	to	represent	is	
based	on	background	knowledge

• Although	the	model	can	be	built	from	the	data,	it	is	often	easier	for	
people	to	leverage	domain	knowledge

• Although	the	model	is	undirected,	it	can	still	be	helpful	to	think	of	
directionality	when	constructing	the	Markov	Net



Scale	Invariance
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The	change	at	the	right	will
not	effect	the	joint	
probability	distribution



Log	Linear	Models

• Equivalent	to	Markov	Nets	(though	they	look	very	different)
• Take	the	natural	log	of	each	parameter:

• Not	scale-invariant	to	this	change
• So	must	change	definition	of	distribution…
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Log	Linear	Models

• This	change	allows	us	to	write	the	joint	probability	distribution	or	
density	as:	

ln potential	values

exp(X)	=	eX

Logical	statements,	either	1	or	0
Also	known	as	features	or	formulae
For	example,
f1 =	a	˄	b
f2 =	¬a	˄	b



Inference

• Almost	the	same	as	in	Bayes	Nets	(this	is	somewhat	surprising	
considering	all	the	other	differences!)

• Possible	approaches:

• Gibbs	sampling

• Variable	elimination

• Belief	propagation



Inference	in	Markov	Networks

• Goal:	Compute	marginals &	conditionals	of

• Conditioning	on	Markov	blanket	of	a	proposition	x	is	easy,	because	
you	only	have	to	consider	cliques	(features)	that	involve	x

• Gibbs	sampling	exploits	this
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Markov	Chain	Monte	Carlo	(MCMC)

• General	algorithm:	Metropolis-Hastings
• Sample	next	state	given	current	one	according
to	transition	probability

• Reject	new	state	with	some	probability	to
maintain	detailed	balance

• Simplest	(and	most	popular)	algorithm:	Gibbs	sampling
• Sample	one	variable	at	a	time	given	the	rest
• Requires	that	no	settings	have	probability	0
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MCMC:	Gibbs	Sampling

state← random	truth	assignment
for i← 1	to num-samples	do
for	each variable x	
sample	x according	to	P(x|neighbors(x))
state← state with	new	value	of	x

P(F)	← fraction	of	states	in	which	F is	true



Markov	Chains:	A	10-Slide	Theoretical	Detour

• A	Markov	chain	includes
• A	set	of	states
• A	set	of	associated	transition	probabilities

• For	every	pair	of	states	s and	sʼ (not	necessarily	distinct)	we	have	an	associated	
transition	probability	T(sèsʼ)	of	moving	from	state	s to	state	sʼ

• For	any	time	t,	T(sèsʼ)	is	the	probability	of	the	Markov	process	being	in	state	sʼ at	time	
t+1 given	that	it	is	in	state	s at	time	t



Some	Properties	of	Markov	Chains

• Irreducible chain:	can	get	from	any	state	to	any	other	
eventually	(non-zero	probability)

• Periodic state:	state	i is	periodic	with	period	k if	all	
returns	to	imust	occur	in	multiples	of	k

• Ergodic chain:	irreducible	and	has	an	aperiodic	state.	
Implies	all	states	are	aperiodic,	so	chain	is	aperiodic.

• Finite	state	space:	can	represent	chain	as	matrix	of	
transition	probabilities…	then	ergodic =	regular…

• Regular chain:	some	power	of	chain	(transition	matrix)	
has	only	positive	elements

• Reversible	chain:	satisfies	detailed	balance	(later)



Sufficient	Condition	for	Regularity

• A	Markov	chain	is	regular	if	the	following	properties	both	hold:
1.	For	any	pair	of	states	s, sʼ that	each	have	nonzero	probability	

there	exists	some	path	from	s to	sʼ with	nonzero	probability
2.	For	all	s with	nonzero	probability,	the	“self	loop” probability	

T(sès)	is	nonzero

• Gibbs	sampling	is	regular	if	no	zeroes	in	CPTs



Notation:	Probabilities

• pt(y)	=	probability	of	being	in	state	y at	time	t

• Transition	function	T(yèyʼ)	=	probability	of	moving	from	state	y to	
state	yʼ



How	p Changes	with	Time	in	a	
Markov	Chain

• pt+1(yʼ)	=	

•A	distribution	pt is	stationary	if	pt =	pt+1,	that	is,	for	
all	y,	pt(y)	=	pt+1(y)

å ®
y

yyy ))T((t 'π



Detailed	Balance

• A	Markov	chain	satisfies	detailed	balance	if	there	exists	a	unique	
distribution	p such	that	for	all	states	y,	yʼ,

p(y)T(yèyʼ)	=	 p(yʼ)T(yʼèy)
• If	a	regular	Markov	chain	satisfies	detailed	balance	with	distribution	
p,	then	there	exists	t such	that	for	any	initial	distribution	p0,	pt =	p

• Detailed	balance	with	regularity	implies	convergence	to	unique	
stationary	distribution



Gibbs	Sampler	satisfies	Detailed	Balance

A	Gibbs	sampler	Markov	chain	defined	by	a	Bayesian	
network	with	all	CPT	entries	nonzero,	representing	
probability	distribution	P,	satisfies	detailed	balance	with	
probability	distribution	p(y)=P(y)	for	all	states	y

Is	special	case	of	Metropolis-Hastings	Algorithm,	next



Using	Other	Samplers

• The	Gibbs	sampler	only	changes	one	random	variable	at	a	time
• Slow	convergence
• High-probability	states	may	not	be	reached	because	reaching	them	requires	
going	through	low-probability	states

• If	zeroes	in	some	CPTs,	may	fail	to	achieve	detailed	balance



Metropolis	Sampler

• Propose	a	transition	with	probability	TQ(yèyʼ)
• Accept	with	probability	A=min(1,	P(yʼ)/P(y))
• If	for	all	y,	yʼ TQ(yèyʼ)=TQ(yʼèy)	then	the	resulting	Markov	chain	
satisfies	detailed	balance



Metropolis-Hastings	Sampler

• Propose	a	transition	with	probability	TQ(yèyʼ)
• Accept	with	probability
A=min(1,	P(yʼ)TQ(yʼèy)/P(y)TQ(yèyʼ))

• Detailed	balance	satisfied
• Acceptance	probability	often	easy	to	compute	even	though	sampling	
according	to	P	difficult



Learning	in	MNs:	Recall	the	Bayes	Net	approach

• In	Bayes	Nets,	we	go	through	each	variable	one	at	a	time,	row	by	row	
in	the	CPT	adjusting	weights

• One	way	to	think	of	this	approach	is	that	we	look	at	the	prior	setting	
and	ask	the	likelihood	of	this	setting	based	on	what	we	see	in	the	
data,	then	adjust	the	CPT	to	be	consistent	with	the	data



Can	we	use	this	approach	on	Markov	Nets?

• No!	Consider	changing	a	single	table	value

• This	changes	the	partition	function,	Z

• Thus,	a	local	change	to	one	table	effects	other	tables;	local	changes	
have	global	effects!



Markov	Net	Learning

• We	want	to	get	the	derivative	of	the	maximum	likelihood	function.	
We	can	then	incrementally	move	each	weight	in	direction	of	the	
gradient	based	on	a	learning	parameter	η

• The	above	approach	amounts	to	differencing	the	expectation	of	
priors	and	observed	occurrences



Markov	Net	Learning,	continued	

• Assume	that	the	dataset	is	composed	of	m	data	points.	Consider	the	
task	of	computing	the	expectation	of	priors	and	observed	
occurrences	for	A	˄	B

• Expectation	of	priors:	m·Pr(A	˄	B)

• Observed	occurrences:	Number	of	data	points	for	which	A and	B hold

• Using	this	approach,	it	can	be	shown	that	gradient	ascent	converges



Analyzing	

• In	this	formulation,	the	w’s	are	just	weights	and	the	f’s	are	just	
features

• As	such,	we	can	throw	the	graph	out	if	we	want	– we	have	everything	
we	need	in	the	wis and	fis

• In	this	view,	parameter	learning	is	just	weight	learning



Weight	Learning

• Maximize	likelihood	or	posterior	probability
• Numerical	optimization	(gradient	or	2nd	order)	
• Negative	likelihood	is	convex:	No	local	maxima

• Requires	inference	at	each	step	(slow!)

No. of times feature i is true in data

Expected no. times feature i is true according to model
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Example:	Ising	Model



For	real-world	problems,	Z takes	too	long	to	compute

• Combine	gradient	descent	and	MCMC	inference:	Persistent	
Contrastive	Divergence	(PCD)

• Use	Pseudo-likelihood approximation	to	Likelihood:	just	do	many	
logistic	regressions,	to	get	parents	(Markov	blanket)	of	each	node

• Often	include	Lasso	penalty… screening	rules can	eliminate	many	
features	by	guaranteeing	their	weights	will	be	0	for	a	given	ƛ

• Can	avoid	problem	altogether	if	use	continuous	variables	instead	of	
discrete,	and	use	Gaussian	graphical	model:	Graphical	Lasso



PCD-k

• Initialize	m=100	MCMC	(Gibbs)	chains

• After	every	k steps	of	Gibbs	sampling,	take	a	gradient	step	in	weight	space,	based	
on	expected	feature	counts	from	the	last	state	of	each	of	the	m chains

• Don’t	restart	Gibbs	chains	after	weight	update:	continue	same	chains

• Common	to	use	k=1

• Justification:

• Weight	updates	are	small	so…

• After	any	weight	update	the	model	has	changed	very	little

• Weight	update	only	needs	right	gradient	direction,	not	exact	expectations


