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Goals for the Lecture

* You should understand the following concepts:

* public key cryptography

* linearly homomorphic encryption
 fully homomorphic encryption

e differential privacy

* global sensitivity

e Laplace mechanism

* Thanks Eric Lantz and Irene Giacomelli!
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Need for Privacy

* Large databases of patient information
* Regulations and expectations of privacy
* Large potential gains from data mining
* How to balance utility and privacy?

* Privacy approaches

* k-anonymity (Sweeney, 2002), I-diversity (Machanavajjhala, 2007), t-
closeness (Li, 2007)

* Homomorphic encryption
* Differential privacy (Dwork, 2006)
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Recall: IWPC Warfarin dosing algorithm

e Over a dozen real-value
prediction techniques were
used

* Linear regression and support
vector regression were the
best performers

Fixed
Clinical

PGx

V

0

M Prediction Error (mg/wk)

5.6044

-0.2614 Age in decades
+0.0087 Height in cm
+0.0128 Weight in kg

-0.8677
-1.6974
-0.4854
-0.5211
-0.9357
-1.0616
-1.9206
-2.3312
-0.2188
-0.1092
-0.2760
-0.1032

VKORCIA/G

VKORCI A/A

VKORC1 genotype unknown
CYP2C9 *1/*2

CYP2C9 *1/*3

CYP2C9 *2/*2

CYP2C9 *2/*3

CYP2C9 *3/*3

CYP2C9 genotype unknown
Asian race

Black or African American
Missing or Mixed race

+1.1816 Enzyme inducer status

-0.5503

Amiodarone status

= square root of final dose
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Recall: Ridge Regression

Data point: (x, y), X€ R?andy€ R

Model:

Training: find argmin of F(w) = Z(y,- — (w, %)%+
=1
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Public-Key Encryption

Sk » secret key
pk - public key

Encryption:

Decryption:
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Public-Key Encryption

Sk » secret key
pk - public key

Encryption: ¢= Encpx(m)
¢ — hides m to everyone that does NOT have sk

Decryption:

pk
m =hello! —— c =6ar7#87t
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Public-Key Encryption

Sk » secret key
pk - public key

Encryption: ¢= Encpx(m)
¢ — hides m to everyone that does NOT have sk

Decryption:

c— reveals mto everyone that has sk

c =6ar7#87t %.Lk hello!

pk
m =hello!] ——
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Linearly-Homomorphic Encryption

Addition of ciphertexts

Encpk(m1) H Encpk(m2) = Encpk(m1 + mp)

Multiplication of a ciphertext by a plaintext

m+ B Encp(m2) = Encpx(m+ x my)
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Linearly-Homomorphic Encryption

Addition of ciphertexts

Encpk(m1) H Encp(m2) = Encpx(m1 + m2)

Multiplication of a ciphertext by a plaintext

M1 HH Encpx(m2) = Encpx(m1 x m2)

Fully homomorphic requires multiplication analog of
and currently is much slower.
Database (DB): 10° x 102 real numbers in [-2000, 2000] with 3 digits in

the fractional part. Times using linearly-homomorphic encryption:

- encrypt the DB: 40 minutes
- sum of two DBs: 3 seconds

- mult. by a constant: 25 mins
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Illustration

Q) -

ML Engine

e -

Crypto Provider
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lllustration
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Illustration
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lllustration
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lllustration

Interactive protocol:

the ML engine “masks inside the encryption”

~

Encox(D) = Encpk(D )

the crypto provider decrypts, gets D and computes a “masked
model”, w

the ML engine computes the real model w from the masked one



lllustration

Results for seven UCI datasets (time in seconds):
(phase 1= encryption, phase 2 = interactive protocol)

Dataset n d £ log,(N) Ryse Phase 1 Phase 2
Time kB Time kB
air 6252 13 1 2048 4.15E-09 1.99 53.24 3.65 96.51
beijing 37582 14 2 2048 5.29E-07 2.37 60.93 4.26 110.10
boston 456 13 4 2048 2.34E-06  2.00 53.24 3.76 96.51
energy 17762 25 3 2724 5.63E-07 12.99 238.26 37.73 451
forest 466 12 3 2048 3.57E-09 1.66 46.08 2.81 82.94
student 356 30 1 2048 4.63E-07 |9.36 253.44 30.40 483.84
wine 4409 11 4 2048 2.62E-05 I e 39.42 2.38 70.40

n = training data (number of data points)

d =

number of features
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Comments on Homomorphic Encryption

e Benefits

* High utility — because No Noise!!!
* No one sees data “in the clear”

 Disadvantages

* Models (or even just predictions) may still give away more information about
training examples (e.g., patients) than about other examples (patients)

* Very high (as of now, completely impractical) runtimes for some methods
(fully homomorphic encryption)

* Feasible approaches (e.g., linearly homomorphic encryption) require re-
developing each learning algorithm (e.g., ridge regression) from scratch with
limited operations

* Protections may be lost if/when Quantum Computers become available
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Just Releasing a Learned Model Can Violate Privacy

* IWPC Warfarin Model
* Can we predict genotype of training set better than others?
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Privacy Blueprint

Patient
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privacy
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Differential Privacy (Dwork, 2006)

e Goal

e Small added risk of adversary learning (private) information about an
individual if his/her data in the private database versus not in the database

 Informally
e Query output does not change much between neighboring databases

e E.g.: what is fraction of people in clinic with diabetes?

Name Has Diabetes (X)

Ross 1
Monica |1
Joey 0
Phoebe O

Chandler | 1
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Differential Privacy Definition

* Given
* Input database D
* Randomized algorithm f: D -> Range(f )
* f is (e, 0)-differentially private iff

Pr(f(D) € S) < e Pr(f(D')eS8S)+6

* Forany S € Range(f) and D’ where d(D,D’ )=1
e ¢ and J are privacy budget
e Smaller means more private
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Obtaining Differential Privacy

* Note: Definition requires stochastic output... how to achieve?

* Perturbation {Laplace Mechanism} (Dwork, 2006)
e Calculate correct answer f(D)
* Add noise f(D) +

 Soft-max {Exponential Mechanism} (McSherry and Talwar, 2007)
e Quality function q(D,s)
* Exponential weighting exp(e q(D,s))

* In both cases, noise is proportional to the sensitivity of the function
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Global Sensitivity

* Given f: D -> R, global sensitivity of fis

GS;= max |f(D)— f(D)

d(D,D’)=1

* Worst case
* Once f and the domain of D are chosen, global sensitivity is fixed
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Add Laplace Noise, u=0, b a function of sensitivity and &
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Relative Risk (Mortality)

Privacy-Utility Tradeoff for Private Warfarin Model
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Comments on Differential Privacy

* Provable guarantees, regardless of side information adversary has
* Elegant formulation that leads to many attractive algorithms

* Has insights for other areas such as fairness

* Poor intuition for how to select ¢

 Can kill utility (e.g., accuracy, AUC) unless we have very many
examples... so good fit for age of Big Data but not for medium data

* How to set privacy budget? If release DP dataset, can update with
new release without adding to previous €, so must plan far ahead



