Privacy-Preserving Machine Learning

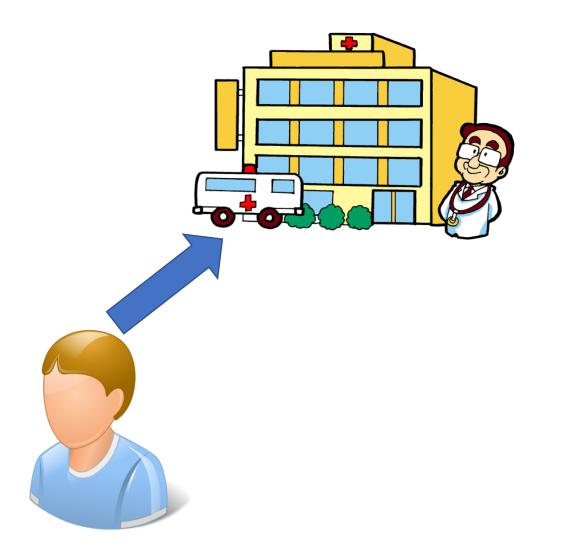
CS 760: Machine Learning Spring 2018 Mark Craven and David Page

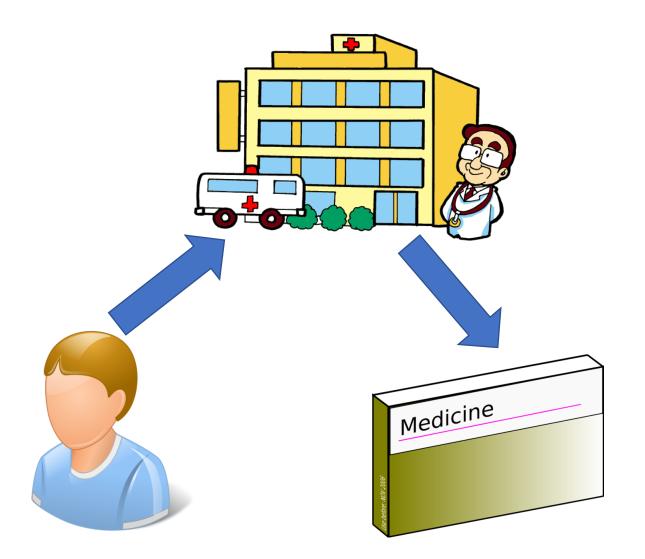
www.biostat.wisc.edu/~craven/cs760

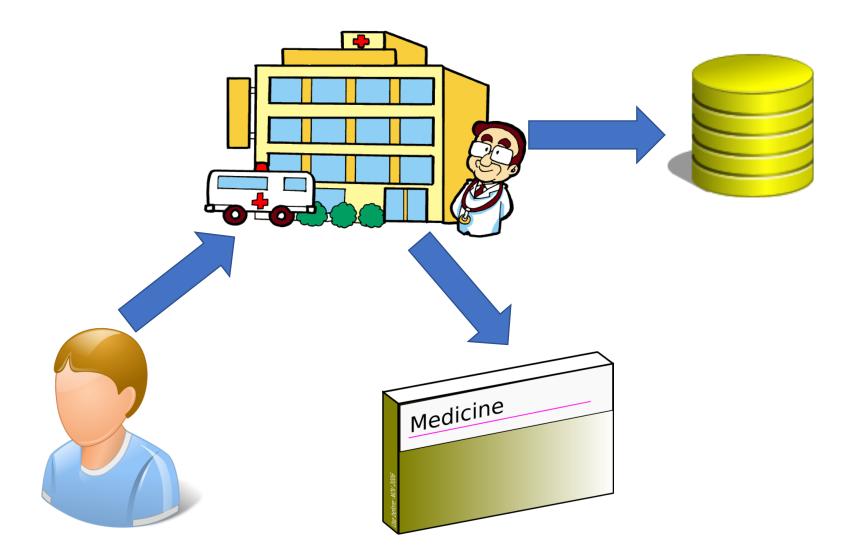
Goals for the Lecture

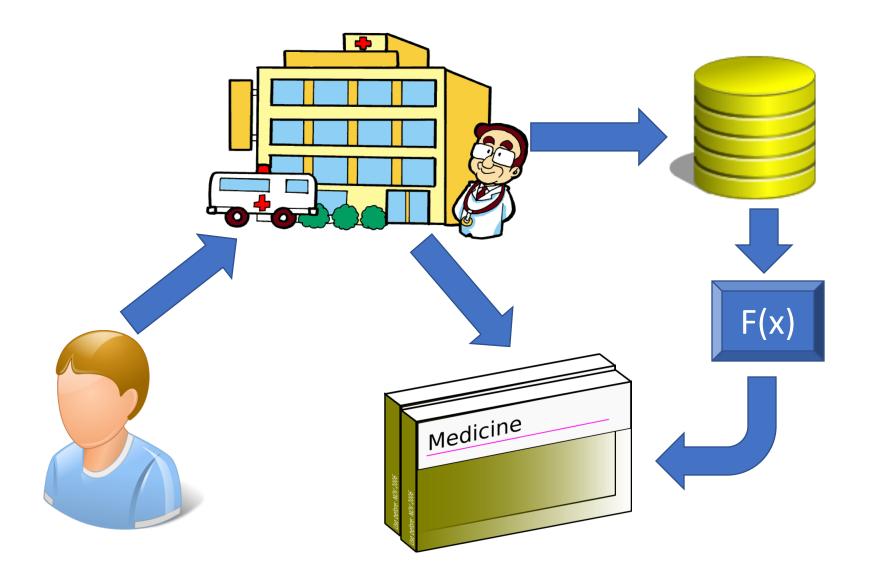
- You should understand the following concepts:
 - public key cryptography
 - linearly homomorphic encryption
 - fully homomorphic encryption
 - differential privacy
 - global sensitivity
 - Laplace mechanism

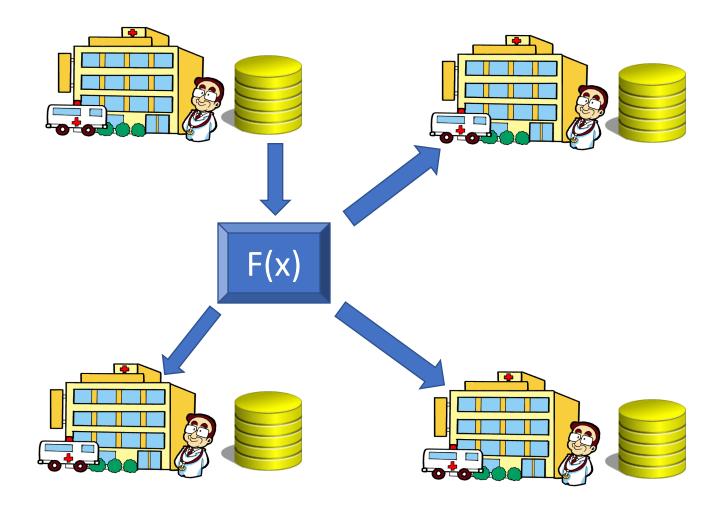
• Thanks Eric Lantz and Irene Giacomelli!

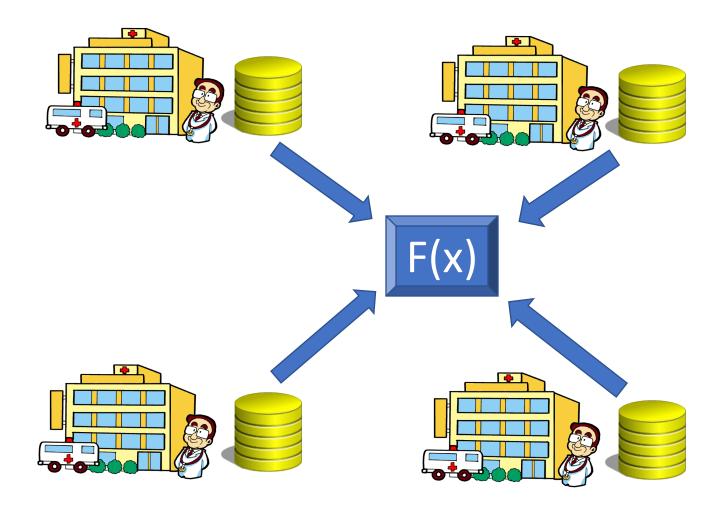


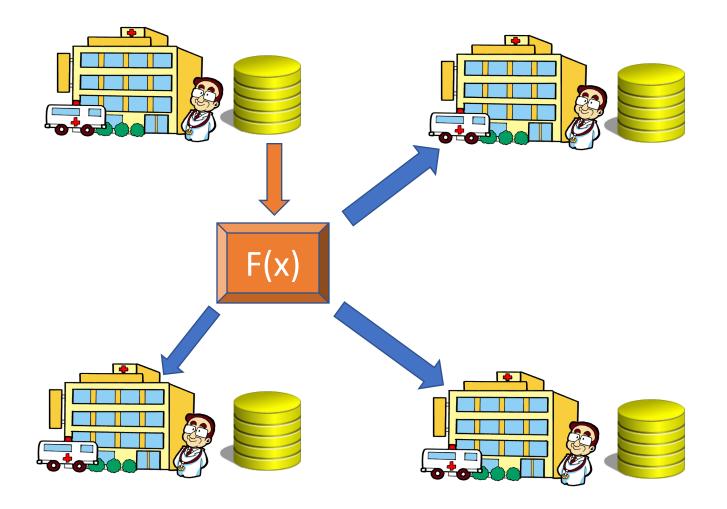


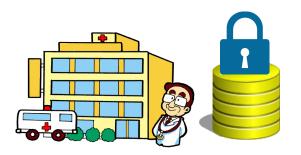












Need for Privacy

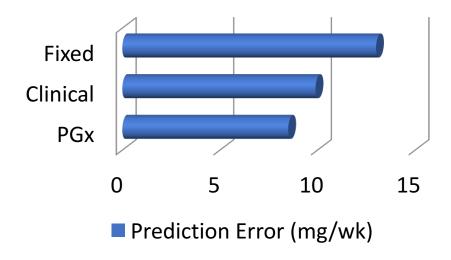
- Large databases of patient information
 - Regulations and expectations of privacy
 - Large potential gains from data mining
 - How to balance utility and privacy?

• Privacy approaches

- k-anonymity (Sweeney, 2002), l-diversity (Machanavajjhala, 2007), tcloseness (Li, 2007)
- Homomorphic encryption
- Differential privacy (Dwork, 2006)

Recall: IWPC Warfarin dosing algorithm

- Over a dozen real-value prediction techniques were used
- Linear regression and support vector regression were the best performers



5.6044

- -0.2614 Age in decades
- +0.0087 Height in cm
- +0.0128 Weight in kg
- -0.8677 VKORC1 A/G
- -1.6974 VKORC1 A/A
- -0.4854 VKORC1 genotype unknown
- -0.5211 CYP2C9 *1/*2
- -0.9357 CYP2C9 *1/*3
- -1.0616 CYP2C9 *2/*2
- -1.9206 CYP2C9 *2/*3
- -2.3312 CYP2C9 *3/*3
- -0.2188 CYP2C9 genotype unknown
- -0.1092 Asian race
- -0.2760 Black or African American
- -0.1032 Missing or Mixed race
- +1.1816 Enzyme inducer status
- -0.5503 Amiodarone status
- = square root of final dose

Recall: Ridge Regression

<u>Data point</u>: (\mathbf{x}, y) , $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$

<u>Model</u>: $\mathbf{w} \in \mathbb{R}^d$ vector of weights

$$y pprox f_{w}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x}
angle = \sum_{j=1}^{d} \mathbf{w}(j) \mathbf{x}(j)$$

Training: find argmin of
$$F(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \langle \mathbf{w}, \mathbf{x}_i \rangle)^2 + \lambda \underbrace{||\mathbf{w}||_2^2}_{\text{regularization}}$$

Public-Key Encryption

 $sk \rightarrow$ secret key $pk \rightarrow$ public key

Encryption:

Decryption:

Public-Key Encryption

 $sk \rightarrow$ secret key $pk \rightarrow$ public key

<u>Encryption</u>: $\mathbf{c} = Enc_{pk}(\mathbf{m})$

 $\mathbf{c} \rightarrow \mathbf{hides} \ \mathbf{m}$ to everyone that does NOT have sk

Decryption:

$$m = hello! \xrightarrow{pk} Enc \rightarrow c = 6a7\#87t$$

Public-Key Encryption

- $sk \rightarrow$ secret key
- $pk \rightarrow \text{public key}$

<u>Encryption</u>: $\mathbf{c} = \text{Enc}_{pk}(\mathbf{m})$

 $\mathbf{c} \rightarrow \mathbf{hides} \ \mathbf{m}$ to everyone that does NOT have sk

Decryption:

 $\mathbf{c} \rightarrow \mathbf{reveals} \ \mathbf{m}$ to everyone that has sk

$$m = hello! \xrightarrow{pk} Enc \rightarrow c = 6a7\#87t \rightarrow Dec \xrightarrow{sk} hello!$$

Linearly-Homomorphic Encryption

Addition of ciphertexts

 $\operatorname{Enc}_{pk}(\mathbf{m}_1) \boxplus \operatorname{Enc}_{pk}(\mathbf{m}_2) = \operatorname{Enc}_{pk}(\mathbf{m}_1 + \mathbf{m}_2)$

Multiplication of a ciphertext by a plaintext

 $\mathbf{m}_1 \boxplus \operatorname{Enc}_{pk}(\mathbf{m}_2) = \operatorname{Enc}_{pk}(\mathbf{m}_1 \times \mathbf{m}_2)$

Linearly-Homomorphic Encryption

Addition of ciphertexts

 $\operatorname{Enc}_{pk}(\mathbf{m}_1) \boxplus \operatorname{Enc}_{pk}(\mathbf{m}_2) = \operatorname{Enc}_{pk}(\mathbf{m}_1 + \mathbf{m}_2)$

Multiplication of a ciphertext by a plaintext (m1 is public!)

 $\mathbf{M}_1 \boxplus \operatorname{Enc}_{pk}(\mathbf{m}_2) = \operatorname{Enc}_{pk}(\mathbf{m}_1 \times \mathbf{m}_2)$

Linearly-Homomorphic Encryption

Addition of ciphertexts

 $\operatorname{Enc}_{pk}(\mathbf{m}_1) \boxplus \operatorname{Enc}_{pk}(\mathbf{m}_2) = \operatorname{Enc}_{pk}(\mathbf{m}_1 + \mathbf{m}_2)$

Multiplication of a ciphertext by a plaintext (m1 is public)

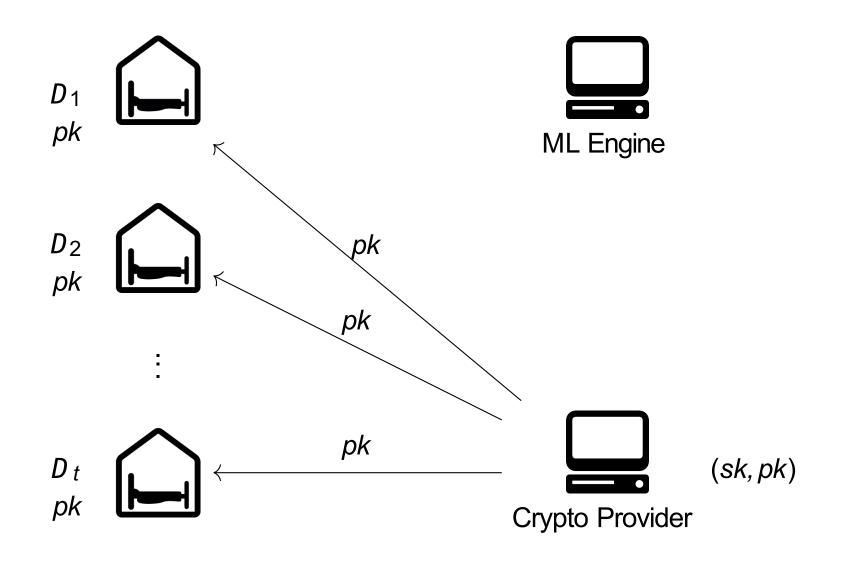
 $\mathbf{M}_1 \boxplus \operatorname{Enc}_{pk}(\mathbf{m}_2) = \operatorname{Enc}_{pk}(\mathbf{m}_1 \times \mathbf{m}_2)$

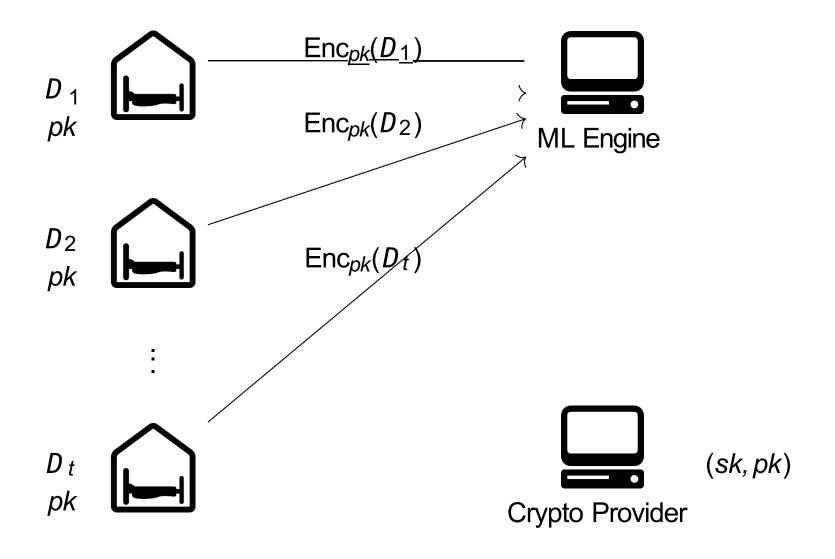
Fully homomorphic requires multiplication analog of \square and currently is **much** slower.

Database (DB): $10^5 \times 10^2$ real numbers in [-2000, 2000] with 3 digits in the fractional part. Times using linearly-homomorphic encryption:

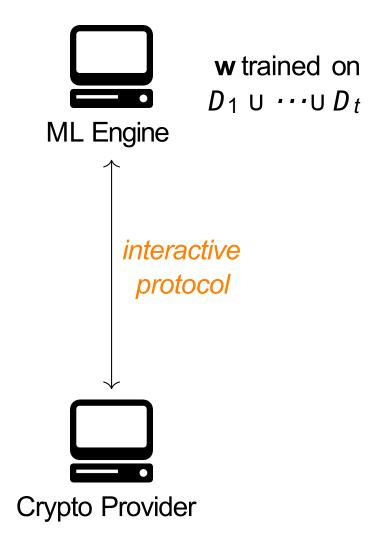
- encrypt the DB: 40 minutes
- sum of two DBs: 3 seconds
- mult. by a constant: 25 mins

.





 $Enc_{pk}(D_1)$ $\operatorname{Enc}_{pk}(D_2)$ D ₁ pk ML Engine $\operatorname{Enc}_{pk}(D_t)$ D₂ pk ÷



Interactive protocol:

- 1. the ML engine "masks inside the encryption" $Enc_{pk}(D) \rightarrow Enc_{pk}(D^{\tilde{}})$
- 2. the crypto provider decrypts, gets $D^{\tilde{}}$ and computes a "masked model", \tilde{w}
- 3. the ML engine computes the real model **w** from the masked one

Results for seven UCI datasets (time in seconds): (phase 1 = encryption, phase 2 = interactive protocol)

Dataset	n	d	l	$\log_2(N)$	R _{MSE}	Phase 1		Phase 2	
						Time	kB	Time	kB
air	6252	13	1	2048	4.15E-09	1.99	53.24	3.65	96.51
beijing	37582	14	2	2048	5.29E-07	2.37	60.93	4.26	110.10
boston	456	13	4	2048	2.34E-06	2.00	53.24	3.76	96.51
energy	17762	25	3	2724	5.63E-07	12.99	238.26	37.73	451
forest	466	12	3	2048	3.57E-09	1.66	46.08	2.81	82.94
student	356	30	1	2048	4.63E-07	9.36	253.44	30.40	483.84
wine	4409	11	4	2048	2.62E-05	1.71	39.42	2.38	70.40

- n = training data (number of data points)
- d = number of features

Comments on Homomorphic Encryption

Benefits

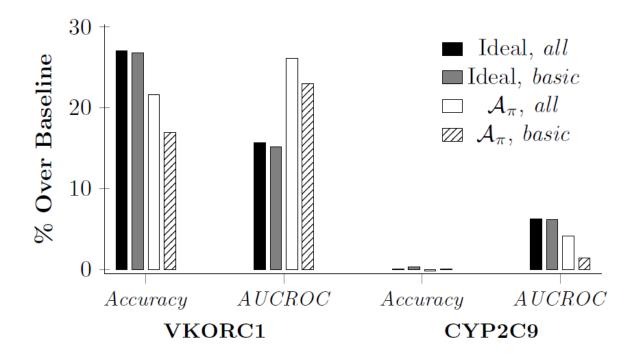
- High utility because No Noise!!!
- No one sees data "in the clear"

Disadvantages

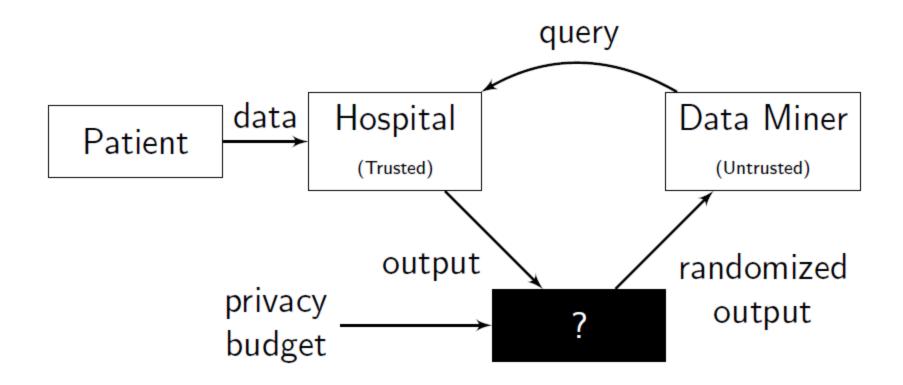
- Models (or even just predictions) may still give away more information about training examples (e.g., patients) than about other examples (patients)
- Very high (as of now, completely impractical) runtimes for some methods (fully homomorphic encryption)
- Feasible approaches (e.g., linearly homomorphic encryption) require redeveloping each learning algorithm (e.g., ridge regression) from scratch with limited operations
- Protections may be lost if/when Quantum Computers become available

Just Releasing a Learned Model Can Violate Privacy

- IWPC Warfarin Model
- Can we predict genotype of training set better than others?



Privacy Blueprint



Differential Privacy (Dwork, 2006)

- Goal
 - Small added risk of adversary learning (private) information about an individual if his/her data in the private database versus not in the database
- Informally
 - Query output does not change much between neighboring databases
 - E.g.: what is fraction of people in clinic with diabetes?

Name	Has Diabetes (X)
Ross	1
Monica	1
Joey	0
Phoebe	0
Chandler	1

Differential Privacy Definition

• Given

- Input database D
- Randomized algorithm f : D -> Range(f)
- f is (e, δ)-differentially private iff

$\Pr(f(D) \in S) \le e^{\epsilon} \Pr(f(D') \in S) + \delta$

- For any $S \in Range(f)$ and D' where d(D,D')=1
 - ϵ and δ are privacy budget
 - Smaller means more private

Obtaining Differential Privacy

- Note: Definition requires stochastic output... how to achieve?
- Perturbation {Laplace Mechanism} (Dwork, 2006)
 - Calculate correct answer f(D)
 - Add noise $f(D) + \eta$
- Soft-max {Exponential Mechanism} (McSherry and Talwar, 2007)
 - Quality function q(D,s)
 - Exponential weighting exp(e q(D,s))
- In both cases, noise is proportional to the *sensitivity* of the function

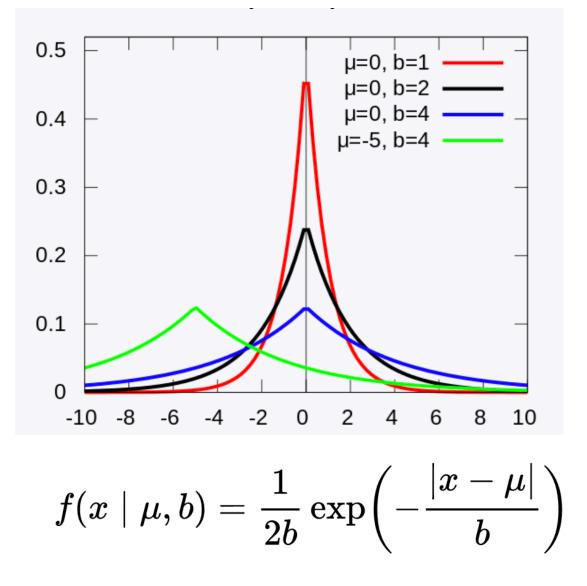
Global Sensitivity

• Given $f: D \rightarrow R$, global sensitivity of f is

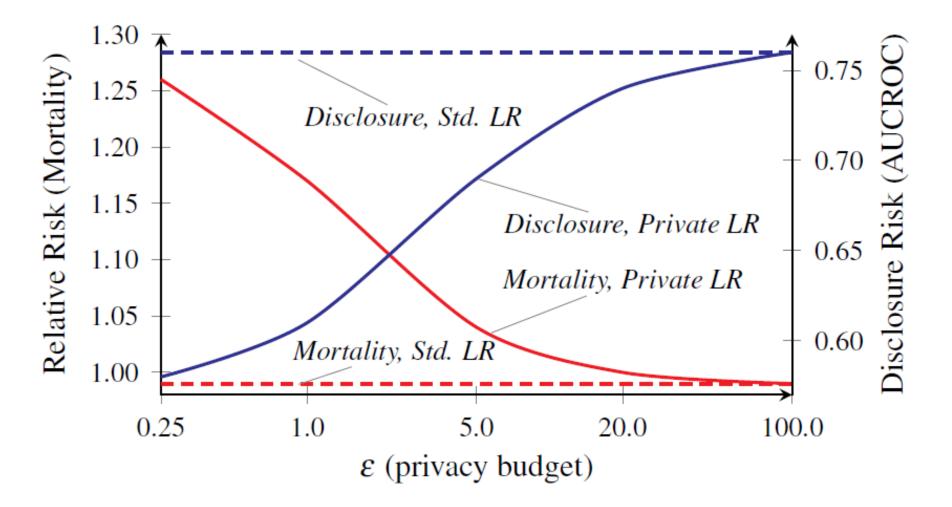
$$GS_f = \max_{d(D,D')=1} |f(D) - f(D')|$$

- Worst case
- Once f and the domain of D are chosen, global sensitivity is fixed

Add Laplace Noise, μ =0, *b* a function of sensitivity and ϵ



Privacy-Utility Tradeoff for Private Warfarin Model



Comments on Differential Privacy

- Provable guarantees, regardless of side information adversary has
- Elegant formulation that leads to many attractive algorithms
- Has insights for other areas such as fairness
- \bullet Poor intuition for how to select ϵ
- Can kill utility (e.g., accuracy, AUC) unless we have very many examples... so good fit for age of Big Data but not for medium data
- How to set privacy budget? If release DP dataset, can update with new release without adding to previous ε, so must plan far ahead