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Goals for the lecture
you should understand the following concepts

• relational learning
• the FOIL algorithm
• plate models



Relational learning example
consider the task of learning a pharmacophore: the substructure of a 
molecule that interacts with a target of interest
• instances for this task consist of interacting (+) and non-interacting 

molecules (-)

to represent each instance, we’d like to describe
• the (variable # of) atoms in the molecule
• the possible conformations of the molecule
• the bonds among atoms
• distances among atoms
• etc.



Relational learning example
[Finn et al., Machine Learning 1998]

a multi-relational representation for molecules



Relational learning example
[Finn et al., Machine Learning 1998]

a learned relational rule characterizing ACE inhibitors 



Relational representation
ACE_inhibitor(A) ← has_zinc_binding_site(A, B) ∧

has_hydrogren_acceptor(A, C)∧
distance(B, C, 7.9, 0.75) ∧
has_hydrogen_acceptor(A, D) ∧
distance(B, D, 8.5, 0.75) ∧
distance(C, D, 8.5, 0.75) ∧
has_hydrogen_acceptor(A, E) ∧
distance(B, E, 4.9, 0.75) ∧
distance(C, E, 3.1, 0.75) ∧
distance(D, E, 3.8, 0.75) 

has_zinc_binding_site
has_hydrogen_acceptor
zinc_binding_site_and hydrogen_acceptor_distance
hydrogen_acceptor_hydrogen_acceptor_distance
…

To learn an equivalent rule with a feature-vector learner, what features 
would we need to represent?

can easily encode distance between a pair of atoms; but this pharmacophore
has 4 important atoms with 6 relevant distances among them



Relational learning example
[Page et al., AAAI 2012] 

demographics diagnoses

genetics

drugs

labs

• Data from electronic health records (EHRs) is being used to learn 
models for risk assessment, adverse event detection, etc.

• A patient’s record is described by multiple tables in a relational DB



• suppose we want to learn the general concept of can-reach in a graph, 
given a set of training instances describing a particular graph

Relational learning example

• how would you represent this task to a learner?



• a relational representation, such as first-order logic, can capture this 
concept succinctly and in a general way

can-reach(X1, X2) ← linked-to(X1, X2)

can-reach(X1, X2) ← linked-to(X1, X3) ∧ can-reach(X3, , X2)

Relational learning example



The FOIL algorithm for relational learning 
[Quinlan, Machine Learning 1990]

given:
• tuples (instances) of a target relation
• extensionally represented background relations

do:
• learn a set of rules that (mostly) cover the positive tuples of the 

target relation, but not the negative tuples



• instances of target relation

• extensionally defined background relations

Input to FOIL



The FOIL algorithm for relational learning

LEARNRULESET(set of tuples T of target relation, background relations B)
{

S = { }
repeat

R ← LEARNRULE(T, B)
S ← S∪ R
T ← T – positive tuples covered by R

until there are no (few) positive tuples left in T
return S

}

FOIL uses a covering approach to learn a set of rules



The FOIL algorithm for relational learning

LEARNRULE(set of tuples T of target relation, background relations B)
{

R = { }
repeat

L ← best literal, based on T and B, to add to right-hand side of R
R ← R∪ L
T ← new set of tuples that satisfy L

until there are no (few) negative tuples left in T
return R

}



Literals in FOIL

• Given the current rule  R(X1, X2, ... Xk) ← L1∧ L2∧… ∧ Ln
FOIL considers adding several types of literals

Xj = Xk

Xj ≠ Xk

Q(V1, V2, ... Va)

¬Q(V1, V2, ... Va)

where Q is a background relation

at least one of the Vi’s has to be in
the LHS of the rule, or was  introduced by
a previous literal 

both Xj and Xk either appear in the LHS
of the rule, or were introduced by a 
previous literal



Literals in FOIL (continued)

Xj = c

Xj ≠ c

Xj > a
Xj ≤ a
Xj >Xk

Xj ≤ Xk

where Xj and Xk are numeric variables and a
is a numeric constant

where c is a constant



• suppose we want to learn rules for the target relation can-reach(X1, X2)
• we’re given instances of the target relation from the following graph

• and instances of the background relation linked-to

FOIL example



• the first rule learned covers 10 of the positive instances
can-reach(X1, X2) ← linked-to(X1, X2)

• the second rule learned covers the other 9 positive instances
can-reach(X1, X2) ← linked-to(X1, X3) ∧ can-reach(X3, , X2)

FOIL example

• note that these rules generalize to other graphs



Evaluating literals in FOIL

• FOIL evaluates the addition of a literal L to a rule R by

FOIL _Gain(L,R) = t log2
p1

p1 + n1
− log2

p0
p0 + n0
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• where
p0 = # of positive tuples covered by R
n0 = # of negative tuples covered by R
p1 = # of positive tuples covered by R ∧ L
n1 = # of negative tuples covered by R ∧ L
t = # of positive of tuples of R also covered by R ∧ L

• like information gain, but takes into account
• we want to cover positives, not just get a more “pure” set of tuples
• the size of the tuple set grows as we add new variables



Evaluating literals in FOIL

FOIL _Gain(L,R) = t Info R0( )− Info R1( )( )

Info Ri( ) = − log2
pi

pi + ni
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• where R0 represents the rule without L and R1 is the rule with L added
• Info(Ri) is the number of bits required to encode a positive in the set of 

tuples covered by Ri



• Definition of can-reach:

can-reach(X1, X2) ← linked-to(X1, X2)

can-reach(X1, X2) ← linked-to(X1, X3) ∧ can-reach(X3, , X2)

Recall this example



FOIL example

can-reach(X1, X2) ←

FOIL _Gain(L,R) = 9 log2
18

18 + 54
− log2

9
9 + 62

"
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%
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                             = 8.8

• consider the first step in 
learning the second clause

can-reach(X1, X2) ←
linked-to(X1, X3) 



Alternative: Plates

α z w N
M

θ

β

https://upload.wikimedia.org/wikipedia/commons/d/d3/Latent_Dirich...

1 of 1 4/18/16 9:24 AM

A rectangle labeled “N” denotes N copies of the Bayes net inside.
Typically arcs go into rectangles, but we relax to allow outgoing next…



Course

Instructor
Rating
Difficulty

Name

Registration

Course
Student
Grade
Satisfaction

RegID

Student

Intelligence
Ranking

Name

Alternative: Probabilistic Relational 
Models (PRMs)

Professor

Popularity
Teaching-Ability

Name

Primary
keys are 
indicated 
by a blue 
rectangle 

Underlined
attributes are

reference
slots of the 

class

Dashed 
lines

indicate the 
types of 
objects 

referenced

M

M M

1

M

1
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many-to-

many
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one-to-many
relationship



PRM Dependency Structure 
for the University Domain

Edges from 
one class to 

another are routed
through slot-chains

Student

Intelligence

Ranking

Course

Rating

Difficulty

Professor

Popularity

Teaching-Ability

Registration

Grade

Satisfaction

M

M

M M

1

1

Edges correspond
to probabilistic
dependency for
objects in that class



PRM Dependency Structure

Student

Intelligence

Ranking

Course

Rating

Difficulty

Professor

Popularity

Teaching-Ability

Registration

Grade

Satisfaction

M

M

M M

1

1

AVG

AVG
The student’s 
ranking depends 
on the average of 
his grades

A student may take 
multiple courses

A course rating depends 
on the average 
satisfaction of students in 
the course



CPDs in PRMs

Student
Intelligence

Ranking

Course
Rating

Difficulty

Professor

Popularity

Teaching-Ability

Registration

Grade

Satisfaction

M

M

M M
1

1

AVG
AVG

D.I      A      B      C
h,h     0.5    0.4    0.1
h,l      0.1    0.5    0.4
l,h      0.8    0.1    0.1
l,l       0.3    0.6    0.1

avg      l      m      h
A     0.1    0.2    0.7
B     0.2    0.4    0.4
C     0.6    0.3    0.1



Alternative: Markov logic

• a logical knowledge base is a set of hard constraints on the set of 
possible worlds

• let’s make them soft constraints: when a world violates a formula,
it becomes less probable, not impossible

• give each formula a weight (higher weight →  stronger constraint)

P(world)∝ exp weights of formulas it satisfies∑( )



MLN definition

• a Markov Logic Network (MLN) is a set of pairs (F, w) where
F is a formula in first-order logic
w is a real number

• together with a set of constants, it defines a Markov network with
– one node for each grounding of each predicate in the MLN
– one feature for each grounding of each formula F in the MLN, 

with the corresponding weight w



MLN example: friends & smokers

habits.  smoking  similar  have  Friends
cancer.  causes  Smoking



MLN example: friends & smokers
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MLN example: friends & smokers
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MLN example: friends & smokers
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xCancerxSmokesx
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Two constants: Anna (A) and Bob (B)



MLN example: friends & smokers

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

ÛÞ"
Þ"

1.1
5.1

Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Two constants: Anna (A) and Bob (B)



MLN example: friends & smokers
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xCancerxSmokesx
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Cancer(A)
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Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)



MLN example: friends & smokers
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MLN example: friends & smokers

( ))()(),(,
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Markov logic networks

• a MLN is a template for ground Markov nets
– the logic determines the form of the cliques
– but if we had one more constant (say, Larry), we’d get a different 

Markov net

• we can determine the probability of a world v (assignment of truth 
values to ground predicates) by

weight of formula i # of true groundings of formula i in v

P(v) = 1
Z
exp wini (v)

i
∑
"

#$
%

&'



Example translated to Markov 
Network

• Facts: • Rules:
Friend(x,y) ∧ Smokes(x) ->

Smokes(y)

friend(Joe,Mary)

smokes(Mary) smokes(Joe)

friend(Mary,Joe)

other facts, 
like 

cancer(Mary)

other facts, 
like 

cancer(Joe)



Computing weights
Consider the effect of rule R: Friends(x,y) ∧
Smokes(x) ->  Smokes(y) weight

1.1

smokes(Mary) ¬smokes(Mary)
smokes(Joe) ¬smokes(Joe)

¬friends(Mary,Joe)
friends(Mary,Joe)

smokes(Joe) ¬smokes(Joe)

This is the only setting that does not satisfy R
Thus, it is given value 1, while the others are 
Given value exp(weight(R))

e1.1

e1.1

e1.1 e1.1

e1.1e1.1e1.1

1



Probability of a world in an MLN

# of true groundings of formula 1 in v

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

 

v =

Friends(A,A) = T
Friends(A,B) = T
Friends(B,A) = T
Friends(B,B) = T
Smokes(A) =F
Smokes(B) = T
Cancer(A) =F
Cancer(B) =F
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#
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∀x Smokes(x)⇒Cancer(x)
x = A      T
x =B       F
n1(v) = 1

 

∀x, y Friends(x, y)⇒ Smokes(x)⇔ Smokes(y)( )
x = A, y = A      T
x = A, y =B      F
x =B, y = A      F
x =B, y =B      T
n2 (v) = 2



Probability of a world in an MLN

Cancer(A)

Smokes(A)Friends(A,A)
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P(v) = 1
Z

exp wini (v)
i
∑
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       = 1
Z

exp 1.5 1( ) +1.1 2( )( )



Three MLN tasks

• inference: can use the toolbox of inference methods developed 
for ordinary Markov networks
– Markov chain Monte Carlo methods, including persistent 

contrastive divergence (PCD) where we iterate MCMC and 
gradient ascent steps (don’t wait for MCMC to converge)

– belief propagation
– variational methods
in tandem with weighted SAT solver

(e.g., MaxWalkSAT [Kautz et al., 1997] )

• parameter learning

• structure learning: can use ordinary relational learning methods 
like FOIL or other ILP algorithms to learn new formula



MLN learning tasks

• the input to the learning process is a relational database of 
ground atoms

• the closed world assumption is used to infer the truth values of 
atoms not present in the DB

Friends(x, y)

Anna, Anna
Anna, Bob
Bob, Anna
Bob, Bob

Cancer(x)

Bob

Smokes(x)

Bob



• parameters (weights on formulas) can be learned using gradient ascent

• approximation methods may be needed to estimate both terms

Parameter learning

# of times clause i is true in data

Expected # times clause i is true according to 
MLN

∂
∂wi

logPw (v) = ni (v)− Ew ni (v)[ ]



MLN experiment
• testbed: a DB describing Univ. of Washington CS department

• 12 predicates
Professor(person)
Student(person)
Area(x, area)
AuthorOf(publication, person)
AdvisedBy(person, person)
etc.

• 2707 constants
publication (342)
person (442)
course (176)
project (153)
etc.



MLN experiment

• obtained knowledge base by having four subjects provide a set of 
formulas in first-order logic describing the domain

• the formulas in the KB represent statements such as
• students are not professors
• each student has at most one advisor
• if a  student is an author of a paper, so is her advisor
• at most one author of a given publication is a professor
• etc.

• note that the KB is not consistent



Learning to predict the 
AdvisedBy(x, y) relation

MLN w/ original KB
MLN w/ KB + ILP learned rules
KB alone
KB + ILP learned rules
ILP learned rules
naïve Bayes
Bayes net learner


