Relational Learning

CS 760: Machine Learning
Spring 2018
Mark Craven and David Page

www.biostat.wisc.edu/~craven/cs760

Goals for the lecture

you should understand the following concepts

- relational learning
- the FoIL algorithm
- plate models

Relational learning example

consider the task of learning a pharmacophore: the substructure of a molecule that interacts with a target of interest

- instances for this task consist of interacting (+) and non-interacting molecules (-)

to represent each instance, we'd like to describe
- the (variable \# of) atoms in the molecule
- the possible conformations of the molecule
- the bonds among atoms
- distances among atoms
- etc.

Relational learning example

 [Finn et al., Machine Learning 1998]a multi-relational representation for molecules

Molecule	Target_1	\ldots	Target_n
moll	inactive		i nactive
mol2	active		inactive
•			
•			
\bullet			

Molecular Bioactivity

Bonds

Molecule	Conformer	Atom_ID	Atom_Type	X_Coordinate	Y_Coordinate	Z_Coordinate
moll	confl	al	carbon	2.58	-1.23	0.69
-						
-						

3D Atom Locations

Relational learning example

[Finn et al., Machine Learning 1998]
a learned relational rule characterizing ACE inhibitors

Molecule A is an ACE inhibitor if for some conformer Conf of A :
molecule A contains a zinc binding site B;
molecule A contains a hydrogen acceptor C;
the distance between B and C in Conf is 7.9 +/- .75;
molecule A contains a hydrogen acceptor D;
the distance between B and D in Conf is 8.5 +/- .75;
the distance between C and D in Conf is 2.1 +/- .75;
molecule A contains a hydrogen acceptor E;
the distance between B and E in Conf is 4.9 +/- .75;
the distance between C and E in Conf is 3.1 +/- .75;
the distance between D and E in Conf is 3.8 +/- 75 .

Relational representation

ACE_inhibitor $(A) \leftarrow$ has_zinc_binding_site $(A, B) \wedge$

```
has_hydrogren_acceptor(A, C) ^
    distance(B, C, 7.9, 0.75)
    has_hydrogen_acceptor(A, D) ^
    distance(B, D, 8.5, 0.75)
    distance(C, D, 8.5, 0.75)
    has_hydrogen_acceptor(A, E) ^
    distance(B, E, 4.9, 0.75) ^
    distance(C, E, 3.1, 0.75) ^
    distance(D, E, 3.8, 0.75)
```

To learn an equivalent rule with a feature-vector learner, what features would we need to represent?

```
has_zinc_binding_site
has_hydrogen_acceptor
zinc_binding_site_and hydrogen_acceptor_distance
hydrogen_acceptor_hydrogen_acceptor_distance
```

can easily encode distance between a pair of atoms; but this pharmacophore has 4 important atoms with 6 relevant distances among them

Relational learning example

[Page et al., AAAI 2012]

- Data from electronic health records (EHRs) is being used to learn models for risk assessment, adverse event detection, etc.
- A patient's record is described by multiple tables in a relational DB

Relational learning example

- suppose we want to learn the general concept of can-reach in a graph, given a set of training instances describing a particular graph

- how would you represent this task to a learner?

Relational learning example

- a relational representation, such as first-order logic, can capture this concept succinctly and in a general way

```
can-reach( (X, , X2)}<<\operatorname{linked-to( }(\mp@subsup{X}{1}{},\mp@subsup{X}{2}{}
```

$\operatorname{can}-\operatorname{reach}\left(X_{1}, X_{2}\right) \leftarrow \operatorname{linked}-\operatorname{to}\left(X_{1}, X_{3}\right) \wedge \operatorname{can}-\operatorname{reach}\left(X_{3}, X_{2}\right)$

The FoIL algorithm for relational learning
 [Quinlan, Machine Learning 1990]

given:

- tuples (instances) of a target relation
- extensionally represented background relations
do:
- learn a set of rules that (mostly) cover the positive tuples of the target relation, but not the negative tuples

Input to FoIL

- instances of target relation

$$
\begin{aligned}
& \oplus: \\
&\langle 0,1\rangle\langle 0,2\rangle\langle 0,3\rangle\langle 0,4\rangle\langle 0,5\rangle\langle 0,6\rangle\langle 0,8\rangle\langle 1,2\rangle\langle 3,2\rangle\langle 3,4\rangle \\
& \Theta\langle 0,0\rangle\langle 0,7\rangle\langle 3,8\rangle\langle 4,5\rangle\langle 4,6\rangle\langle 4,8\rangle\langle 6,8\rangle\langle 7,6\rangle\langle 7,8\rangle \\
&\langle 2,0\rangle\langle 2,1\rangle\langle 2,2\rangle\langle 2,3\rangle\langle 1,3\rangle\langle 1,4\rangle\langle 1,5\rangle\langle 1,6\rangle\langle 1,7\rangle\langle 1,8\rangle \\
&\langle 3,1\rangle\langle 3,3\rangle\langle 3,7\rangle\langle 4,0\rangle\langle 4,1\rangle\langle 4,2\rangle\langle 4,6\rangle\langle 2,7\rangle\langle 2,8\rangle\langle 3,0\rangle \\
&\langle 5,1\rangle\langle 5,4\rangle\langle 5\langle 5,3\rangle\langle 5,4\rangle\langle 5,5\rangle\langle 5,6\rangle\langle 5,7\rangle\langle 5,8\rangle\langle 6,0\rangle\langle 6,0\rangle \\
&\langle 6,2\rangle\langle 6,3\rangle\langle 6,4\rangle\langle 6,5\rangle\langle 6,6\rangle\langle 6,7\rangle\langle 7,0\rangle\langle 7,1\rangle\langle 7,2\rangle\langle 7,3\rangle \\
&\langle 7,4\rangle\langle 7,5\rangle\langle 7,7\rangle\langle 8,0\rangle\langle 8,1\rangle\langle 8,2\rangle\langle 8,3\rangle\langle 8,4\rangle\langle 8,5\rangle\langle 8,6\rangle \\
&\langle 8,7\rangle\langle 8,8\rangle
\end{aligned}
$$

- extensionally defined background relations

$$
\begin{aligned}
\text { linked-to }= & \{\langle 0,1\rangle,\langle 0,3\rangle,\langle 1,2\rangle,\langle 3,2\rangle,\langle 3,4\rangle \\
& \langle 4,5\rangle,\langle 4,6\rangle,\langle 6,8\rangle,\langle 7,6\rangle,\langle 7,8\rangle\}
\end{aligned}
$$

The FoIL algorithm for relational learning

Foil uses a covering approach to learn a set of rules

LEARNRULESET(set of tuples T of target relation, background relations B)
$\{$
$S=\{ \}$
repeat
$R \leftarrow \operatorname{LEARNRULE}(T, B)$
$S \leftarrow S \cup R$
$T \leftarrow T$ - positive tuples covered by R
until there are no (few) positive tuples left in T
return S
\}

The FoIL algorithm for relational learning

LEARNRULE(set of tuples T of target relation, background relations B) \{
$R=\{ \}$
repeat
$L \leftarrow$ best literal, based on T and B, to add to right-hand side of R
$R \leftarrow R \cup L$
$T \leftarrow$ new set of tuples that satisfy L
until there are no (few) negative tuples left in T
return R
\}

Literals in FoIL

- Given the current rule $R\left(X_{1}, X_{2}, \ldots X_{k}\right) \leftarrow L_{1} \wedge L_{2} \wedge \ldots \wedge L_{n}$ Foll considers adding several types of literals

$$
\begin{array}{ll}
X_{j}=X_{k} & \begin{array}{l}
\text { both } X_{j} \text { and } X_{k} \text { either appear in the LHS } \\
\text { of the rule, or were introduced by a } \\
\text { previous literal }
\end{array} \\
X_{j} \neq X_{k} & \begin{array}{l}
\text { at least one of the } V_{i}^{\prime} \text { s has to be in } \\
\text { the LHS of the rule, or was introduced by } \\
\text { a previous literal }
\end{array}
\end{array}
$$

where Q is a background relation

Literals in FoIL (continued)

$$
X_{j}=c
$$

where c is a constant

$$
X_{j} \neq c
$$

$$
X_{j}>a
$$

$$
X_{j} \leq a
$$

where X_{j} and X_{k} are numeric variables and a is a numeric constant

$$
X_{j}>X_{k}
$$

$$
X_{j} \leq X_{k}
$$

Foil example

- suppose we want to learn rules for the target relation can-reach $\left(X_{1}, X_{2}\right)$
- we're given instances of the target relation from the following graph

- and instances of the background relation linked-to

$$
\begin{aligned}
\text { linked-to }= & \{\langle 0,1\rangle,\langle 0,3\rangle,\langle 1,2\rangle,\langle 3,2\rangle,\langle 3,4\rangle, \\
& \langle 4,5\rangle,\langle 4,6\rangle,\langle 6,8\rangle,\langle 7,6\rangle,\langle 7,8\rangle\}
\end{aligned}
$$

FoIL example

- the first rule learned covers 10 of the positive instances can-reach $\left(X_{1}, X_{2}\right) \leftarrow$ linked-to $\left(X_{1}, X_{2}\right)$
- the second rule learned covers the other 9 positive instances can-reach $\left(X_{1}, X_{2}\right) \leftarrow \operatorname{linked}$-to $\left(X_{1}, X_{3}\right) \wedge$ can-reach $\left(X_{3}, X_{2}\right)$

- note that these rules generalize to other graphs

Evaluating literals in FoIL

- FoIL evaluates the addition of a literal L to a rule R by

$$
F O I L_{-} \operatorname{Gain}(L, R)=t\left(\log _{2} \frac{p_{1}}{p_{1}+n_{1}}-\log _{2} \frac{p_{0}}{p_{0}+n_{0}}\right)
$$

- where
$p_{0}=\#$ of positive tuples covered by R
$n_{0}=\#$ of negative tuples covered by R
$p_{l}=\#$ of positive tuples covered by $R \wedge L$
$n_{l}=\#$ of negative tuples covered by $R \wedge L$
$t=$ \# of positive of tuples of R also covered by $R \wedge L$
- like information gain, but takes into account
- we want to cover positives, not just get a more "pure" set of tuples
- the size of the tuple set grows as we add new variables

Evaluating literals in Foll

$$
F O I L_{-} \operatorname{Gain}(L, R)=t\left(\operatorname{Info}\left(R_{0}\right)-\operatorname{Info}\left(R_{1}\right)\right)
$$

- where R_{0} represents the rule without L and R_{I} is the rule with L added
- Info $\left(R_{i}\right)$ is the number of bits required to encode a positive in the set of tuples covered by R_{i}

$$
\operatorname{Info}\left(R_{i}\right)=-\log _{2}\left(\frac{p_{i}}{p_{i}+n_{i}}\right)
$$

Recall this example

- Definition of can-reach:

$$
\operatorname{can-reach}\left(X_{1}, X_{2}\right) \leftarrow \text { linked-to }\left(X_{1}, X_{2}\right)
$$

$\operatorname{can}-\operatorname{reach}\left(X_{1}, X_{2}\right) \leftarrow \operatorname{linked}$-to $\left(X_{1}, X_{3}\right) \wedge \operatorname{can}-r e a c h\left(X_{3}, X_{2}\right)$

FoIL example

- consider the first step in learning the second clause
can-reach $\left(X_{1}, X_{2}\right) \leftarrow$

<0,2>			$\langle 0,5\rangle$	$\langle 0,6\rangle\langle$	$\langle 0,8\rangle$			
$\langle 3,5\rangle\langle 3,6\rangle$	$\langle 3,8\rangle$			$\langle 4,8\rangle$				
$\Theta:\langle 0,0\rangle\langle 0,7\rangle$	$\langle 1,0\rangle$	$\langle 1,1\rangle$	<1,3>	<1,4〉	<1,5	<1,6>	<1,7	$\langle 1,8\rangle$
$\langle 2,0\rangle\langle 2,1\rangle$	$\langle 2,2\rangle$	$\langle 2,3\rangle$	<2,4>	<2,5 \rangle	<2,6)	$\langle 2,7\rangle$		$\langle 3,0\rangle$
$\langle 3,1\rangle\langle 3,3\rangle$	<3,7>	$\langle 4,0\rangle$	$\langle 4,1\rangle$	$\langle 4,2\rangle$	$\langle 4,3\rangle$	$\langle 4,4\rangle$	(4,	$\langle 5,0\rangle$
$\langle 5,1\rangle\langle 5,2\rangle$	〈5,3>	$\langle 5,4\rangle$	$\langle 5,5\rangle$	$\langle 5,6\rangle$	$\langle 5,7\rangle$	$\langle 5,8\rangle$	<6,0	$\langle 6,1\rangle$
$\langle 6,2\rangle\langle 6,3\rangle$	$\langle 6,4\rangle$	$\langle 6,5\rangle$	$\langle 6,6\rangle$	$\langle 6,7\rangle$	$\langle 7,0\rangle$	$\langle 7,1\rangle$	$\langle 7,2$	<7,3>
$\langle 7,4\rangle\langle 7,5\rangle$	$\langle 7,7\rangle$	$\langle 8,0\rangle$	$\langle 8,1\rangle$	$\langle 8,2\rangle$	$\langle 8,3\rangle$	$\langle 8,4\rangle$	<8,5	<8,6)
$\langle 8,7\rangle\langle 8,8\rangle$								

$\oplus \oplus:\langle 0,2,1\rangle\langle 0,2,3\rangle\langle 0,4,1\rangle\langle 0,4,3\rangle\langle 0,5,1\rangle\langle 0,5,3\rangle\langle 0,6,1\rangle$ $\langle 0,6,3\rangle\langle 0,8,1\rangle\langle 0,8,3\rangle\langle 3,5,2\rangle\langle 3,5,4\rangle\langle 3,6,2\rangle\langle 3,6,4\rangle$ $\langle 3,8,2\rangle\langle 3,8,4\rangle\langle 4,8,5\rangle\langle 4,8,6\rangle$
$\Theta:\langle 0,0,1\rangle\langle 0,0,3\rangle\langle 0,7,1\rangle\langle 0,7,3\rangle\langle 1,0,2\rangle\langle 1,1,2\rangle\langle 1,3,2\rangle$
$\langle 1,4,2\rangle\langle 1,5,2\rangle\langle 1,6,2\rangle\langle 1,7,2\rangle\langle 1,8,2\rangle\langle 3,0,2\rangle\langle 3,0,4\rangle$
FOIL_Gain $(L, R)=9\left(\log _{2} \frac{18}{18+54}-\log _{2} \frac{9}{9+62}\right)$

$$
=8.8
$$

$$
\begin{aligned}
& \langle 3,1,2\rangle\langle 3,1,4\rangle\langle 3,3,2\rangle\langle 3,3,4\rangle\langle 3,7,2\rangle\langle 3,7,4\rangle\langle 4,0,5\rangle \\
& \langle 4,0,6\rangle\langle 4,1,5\rangle\langle 4,1,6\rangle\langle 4,2,5\rangle\langle 4,2,6\rangle\langle 4,3,5\rangle\langle 4,3,6\rangle \\
& \langle 4,4,5\rangle\langle 4,4,6\rangle\langle 4,7,5\rangle\langle 4,7,6\rangle\langle 6,0,8\rangle\langle 6,1,8\rangle\langle 6,2,8\rangle \\
& \langle 6,3,8\rangle\langle 6,4,8\rangle\langle 6,5,8\rangle\langle 6,6,8\rangle\langle 6,7,8\rangle\langle 7,0,6\rangle\langle 7,0,8\rangle \\
& \langle 7,1,6\rangle\langle 7,1,8\rangle\langle 7,2,6\rangle\langle 7,2,8\rangle\langle 7,3,6\rangle\langle 7,3,8\rangle\langle 7,4,6\rangle \\
& \langle 7,4,8\rangle\langle 7,5,6\rangle\langle 7,5,8\rangle\langle 7,7,6\rangle\langle 7,7,8\rangle
\end{aligned}
$$

$$
\langle 7,4,8\rangle\langle 7,5,6\rangle\langle 7,5,8\rangle\langle 7,7,6\rangle\langle 7,7,8\rangle
$$

Alternative: Plates

A rectangle labeled " N " denotes N copies of the Bayes net inside. Typically arcs go into rectangles, but we relax to allow outgoing next...

Alternative: Probabilistic Relational Models (PRMs)

PRM Dependency Structure for the University Domain

Edges correspond to probabilistic dependency for objects in that class

PRM Dependency Structure

CPDs in PRMs

Alternative: Markov logic

- a logical knowledge base is a set of hard constraints on the set of possible worlds
- let's make them soft constraints: when a world violates a formula, it becomes less probable, not impossible
- give each formula a weight (higher weight \rightarrow stronger constraint)

$$
\mathrm{P}(\text { world }) \propto \exp \left(\sum \text { weights of formulas it satisfies }\right)
$$

MLN definition

- a Markov Logic Network (MLN) is a set of pairs (F, w) where F is a formula in first-order logic
w is a real number
- together with a set of constants, it defines a Markov network with
- one node for each grounding of each predicate in the MLN
- one feature for each grounding of each formula F in the MLN, with the corresponding weight w

MLN example: friends \& smokers

Smoking causes cancer.
Friends have similar smoking habits.

MLN example: friends \& smokers

$\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$\forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

MLN example: friends \& smokers

1.5 $\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
1.1 $\forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

MLN example: friends \& smokers

$$
\begin{array}{l|l}
1.5 & \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x) \\
1.1 & \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y)) \\
\hline
\end{array}
$$

Two constants: Anna (A) and Bob (B)

MLN example: friends \& smokers

$1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)

MLN example: friends \& smokers

$1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)
Friends (A, B)

Smokes(A)
Smokes(B)
Friends(B, B)

Cancer(B)

MLN example: friends \& smokers

$1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)
Friends (A, B)

MLN example: friends \& smokers

$1.5 \quad \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)

Markov logic networks

- a MLN is a template for ground Markov nets
- the logic determines the form of the cliques
- but if we had one more constant (say, Larry), we'd get a different Markov net
- we can determine the probability of a world v (assignment of truth values to ground predicates) by

$$
\begin{aligned}
& P(\boldsymbol{v})=\frac{1}{Z} \exp \left(\sum_{i} w_{i} n_{i}(\boldsymbol{v})\right) \\
& \text { weight of formula \# of true groundings of formula } i \text { in } v
\end{aligned}
$$

Example translated to Markov Network

Fectis:
smokes(Mary)
smokes(Joe)
friend(Joe, Mary)

- RuJes:

Friend $(x, y) \wedge$ Smokes (x)-> Smokes(y)

Computing weights

Consider the effect of rule R: Friends $(x, y) \wedge$ Smokes(x) -> Smokes(y) $\frac{\text { weight }}{1.1}$

	smokes(Mary)		ᄀsmokes(Mary)	
	smokes(Joe)	ᄀsmokes(Joe)	smokes(Joe)	ᄀsmokes(Joe)
friends(Mary,Joe)	$e^{1.1}$	1	$e^{1.1}$	$\mathrm{e}^{1.1}$
ᄀfriends(Mary,Joe)	$e^{1.1}$	$e^{1.1}$	$e^{1.1}$	$e^{1.1}$

This is the only setting that does not satisfy R
Thus, it is given value 1, while the others are Given value $\exp ($ weight(R))

Probability of a world in an MLN

$v=\left[\begin{array}{l}\text { Friends }(A, A)=T \\ \text { Friends }(A, B)=T \\ \text { Friends }(B, A)=T \\ \text { Friends }(B, B)=T \\ \text { Smokes }(A)=F \\ \text { Smokes }(B)=T \\ \text { Cancer }(A)=F \\ \text { Cancer }(B)=F\end{array}\right]$

$$
\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)
$$

$$
x=\mathrm{A} \quad \mathrm{~T}
$$

$$
x=\mathrm{B} \quad \mathrm{~F}
$$

$$
n_{1}(v)=1
$$

$$
\begin{aligned}
& \forall x, y \text { Friends }(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y)) \\
& x=\mathrm{A}, y=\mathrm{A} \quad \mathrm{~T} \\
& x=\mathrm{A}, y=\mathrm{B} \quad \mathrm{~F} \\
& x=\mathrm{B}, y=\mathrm{A} \quad \mathrm{~F} \\
& x=\mathrm{B}, y=\mathrm{B} \quad \text { T } \\
& n_{2}(\boldsymbol{v})=2
\end{aligned}
$$

\# of true groundings of formula 1 in v

Probability of a world in an MLN

$$
v=\left[\begin{array}{l}
\text { Friends }(A, A)=T \\
\text { Friends }(A, B)=T \\
\text { Friends }(B, A)=T \\
\text { Friends }(B, B)=T \\
\text { Smokes }(A)=F \\
\text { Smokes }(B)=T \\
\text { Cancer }(A)=F \\
\text { Cancer }(B)=F
\end{array}\right]
$$

$$
\begin{aligned}
P(\boldsymbol{v}) & =\frac{1}{Z} \exp \left(\sum_{i} w_{i} n_{i}(\boldsymbol{v})\right) \\
& =\frac{1}{Z} \exp (1.5(1)+1.1(2))
\end{aligned}
$$

Three MLN tasks

- inference: can use the toolbox of inference methods developed for ordinary Markov networks
- Markov chain Monte Carlo methods, including persistent contrastive divergence (PCD) where we iterate MCMC and gradient ascent steps (don't wait for MCMC to converge)
- belief propagation
- variational methods
in tandem with weighted SAT solver (e.g., MaxWalkSAT [Kautz et al., 1997])
- parameter learning
- structure learning: can use ordinary relational learning methods like FOIL or other ILP algorithms to learn new formula

MLN learning tasks

- the input to the learning process is a relational database of ground atoms

Friends(x, y)	Smokes(x)	Cancer (x)
Anna, Anna	Bob	Bob
Anna, Bob		
Bob, Anna		
Bob, Bob		

- the closed world assumption is used to infer the truth values of atoms not present in the DB

Parameter learning

- parameters (weights on formulas) can be learned using gradient ascent

- approximation methods may be needed to estimate both terms

MLN experiment

- testbed: a DB describing Univ. of Washington CS department
- 12 predicates

Professor(person)
Student(person)
Area(x, area)
AuthorOf(publication, person)
AdvisedBy(person, person)
etc.

- 2707 constants
publication (342)
person (442)
course (176)
project (153)
etc.

MLN experiment

- obtained knowledge base by having four subjects provide a set of formulas in first-order logic describing the domain
- the formulas in the KB represent statements such as
- students are not professors
- each student has at most one advisor
- if a student is an author of a paper, so is her advisor
- at most one author of a given publication is a professor
- etc.
- note that the KB is not consistent

Learning to predict the AdvisedBy (x, y) relation

