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Support Vector Machines

Mark Craven and David Page
Computer Sciences 760

Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed 
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture
you should understand the following concepts

• the margin
• slack variables
• the linear support vector machine
• hinge loss
• nonlinear SVMs
• the kernel trick
• the primal and dual formulations of SVM learning
• support vectors
• the kernel matrix
• valid kernels
• polynomial kernel
• Gausian kernel
• string kernels
• support vector regression
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Burr Settles, UW CS PhD

Four key SVM ideas
• Maximize the margin

don’t choose just any separating hyperplane

• Penalize misclassified examples
use soft constraints and slack variables

• Use optimization methods to find model
linear programming
quadratic programming

• Use kernels to represent nonlinear functions and handle 
complex instances (sequences, trees, graphs, etc.)
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Some key vector concepts

 
w ⋅x  =  wTx  =  wixi
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for example

x 2 = xi
2

i
∑

the 2-norm (Euclidean length) of a vector x is defined as:

Linear separator learning revisited

h(x) = 1  if  wi
i=1

n

∑ xi
⎛
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+ b > 0
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 y(w
Tx + b) > 0

an instance 〈x, y〉 will be classified 
correctly if 

suppose we encode our classes as {-1, +1} and consider a linear classifier

x1

x2
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Large margin classification
• Given a training set that is linearly separable, there are infinitely many 

hyperplanes that could separate the positive/negative instances.
• Which one should we choose?

• In SVM learning, we find the hyperplane that maximizes the margin.

Figure from Ben-Hur & Weston, 
Methods in Molecular Biology 2010

The margin
• suppose we learn a hyperplane h given a training set D
• let x+ denote the closest instance to the hyperplane among positive 

instances, and similarly for x- and negative instances 
• since		𝒘#𝒙 + 𝑏 = 0		and		𝑐 𝒘#𝒙 + 𝑏 = 0 define the same hyperplane, 

we have the freedom to choose the normalization of 𝒘
• choose normalization such that		𝒘#𝒙* + 𝑏 = 1		and		𝒘#𝒙, + 𝑏 = −1		for 

positive and negative support vectors respectively
• then the margin is given by

x+

x-

margin4 ℎ = 6
7
	 𝒘
𝒘 8

9 𝒙* − 𝒙,

									= 𝒘: 𝒙;,𝒙<
𝒘 8

= 6
𝒘 8
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The hard-margin SVM

 

subject to constraints :   y(i )(wTx(i ) + b) ≥1      
for  i = 1,…,  m

 

minimize
w,b

1
2

 w 2
2

• given a training set D = {〈x(1), y(1)〉, …, 〈x(m), y(m)〉}
• we can frame the goal of maximizing the margin as a constrained 

optimization problem

adjust these
parameters

to minimize this

• and use standard algorithms to find an optimal solution to this 
problem 

correctly classify x(i)

with room to spare

The soft-margin SVM
[Cortes & Vapnik, Machine Learning 1995]

• if the training instances are not linearly separable, the 
previous formulation will fail

• we can adjust our approach by using slack variables
(denoted by ξ) to tolerate errors

 

subject to constraints :   y(i )(wTx(i ) + b) ≥1−ξ (i )

                                        ξ (i ) ≥ 0      
for  i = 1,…,  m

  

minimize
w,b,ξ (1)…ξ (m )

1
2

 w 2
2 +C ξ (i )

i=1

m

∑

• C determines the relative importance of maximizing margin vs. 
minimizing slack
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The effect of C in a soft-margin SVM

Figure from Ben-Hur & Weston, 
Methods in Molecular Biology 2010

Hinge loss
• when we covered neural nets, we talked about minimizing squared 

loss and cross-entropy loss
• SVMs minimize hinge loss

loss (error) 
when  𝑦 = 1

model output ℎ 𝒙

squared loss

0/1 loss

hinge loss
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Nonlinear classifiers

• What if a linear separator is not an appropriate decision 
boundary for a given task?

• For any data set, there exists a mapping ϕ to a higher-
dimensional space such that the data is linearly separable

 φ(x) = φ1(x),  φ2 (x),  …,  φk (x)( )
• Example: mapping to quadratic space

x = x1,  x2

φ(x) = x1
2,   2x11x2,   x2

2,   2x11,   2x2,   1( )
suppose x is represented by 2 features

• now try to find a linear separator in this space

Nonlinear classifiers

• for the linear case, our discriminant function was given by

• for the nonlinear case, it can be expressed as

where ŵ is a higher dimensional vector

h(x) = 1  if  w ⋅x + b > 0
−1  otherwise             

 
⎧
⎨
⎩

h(x) = 1  if  ŵ ⋅φ(x)+ b > 0
−1  otherwise             

 
⎧
⎨
⎪

⎩⎪
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SVMs with polynomial kernels

Figure from Ben-Hur & Weston, 
Methods in Molecular Biology 2010

The kernel trick
• explicitly computing this nonlinear mapping does not scale well
• a dot product between two higher-dimensional mappings can 

sometimes be implemented by a kernel function
• example: quadratic kernel

 

k(x, z) = x ⋅ z +1( )2

         = x1z1 + x2z2 +1( )2

         = x1
2z1

2 + 2x1x2z1z2 + x2
2z2

2 + 2x1z1 + 2x2z2 +1

         = x1
2,  2x1x2,  x2

2,  2x1,  2x2,  1( ) i
             z1

2,  2z1z2,  z2
2,  2z1,  2z2,  1( )

         = φ(x) ⋅φ(z)
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The kernel trick

• thus we can use a kernel to compute the dot product without 
explicitly mapping the instances to a higher-dimensional space

k(x, z) = x ⋅ z +1( )2 = φ(x) ⋅φ(z)

But why is the kernel trick helpful?

Using the kernel trick
• given a training set D = {〈x(1), y(1)〉, …, 〈x(m), y(m)〉}
• suppose the weight vector can be represented as a linear 

combination of the training instances

w = α i
i=1

m

∑ x(i )

 
α i

i=1

m

∑ x(i ) i x + b

• then we can represent a linear SVM as

 

    α i
i=1

m

∑ φ x(i )( ) iφ x( ) + b

 = α i
i=1

m

∑ k x(i ),x( ) + b

• and a nonlinear SVM as
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Can we represent a weight vector as a 
linear combination of training instances?

• consider perceptron learning, where each weight can be represented as

wj = α i
i=1

m

∑ x j
(i )

• proof: each weight update has the form wj (t) = wj (t −1)+ηδ t
(i )y(i )x j

(i )

δ t
(i ) = 1 if x(i )  misclassified in update t

0 otherwise                              

⎧
⎨
⎪

⎩⎪
wj = ηδ t

(i )y(i )x j
(i )

i=1

m

∑
t
∑

wj = ηδ t
(i )y(i )

t
∑⎛⎝⎜

⎞
⎠⎟i=1

m

∑  x j
(i )

wj = α i
i=1

m

∑ x j
(i ) Note: this is for the

case in which y ∈{-1, 1}

The primal and dual formulations of 
the hard-margin SVM

 

subject to constraints :   y(i )(wTx(i ) + b) ≥1      
for  i = 1,…,  m

 

minimize
w,b

1
2

 w 2
2primal

  

maximize
α1,…,αm

α i
i=1

m

∑ − 1
2

α jα k y
( j )y(k ) x( j ) i x(k )( )

k=1

m

∑
j=1

m

∑

 

subject to constraints :   α i ≥ 0      for  i = 1,…,  m

                                        α i y
(i )

i=1

m

∑ = 0

dual
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The dual formulation with a 
kernel (hard margin version)

 

subject to constraints :   y(i )(wTφ x(i )( ) + b) ≥1      

for  i = 1,…,  m

 

minimize
w,b

1
2

 w 2
2primal

  

maximize
α1,…,αm

α i
i=1

m

∑ − 1
2

α jα k y
( j )y(k )k x( j ),  x(k )( )

k=1

m

∑
j=1

m

∑

 

subject to constraints :   α i ≥ 0      for  i = 1,…,  m

                                        α i y
(i )

i=1

m

∑ = 0

dual

Support vectors
• the solution to the dual formulation is a sparse linear combination of the 

training instances
• those instances having αi > 0 are called support vectors – they lie on 

the margin boundary
• the solution wouldn’t change if all the instances with αi = 0 were deleted 

support vectors
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The kernel matrix

• the kernel matrix (a.k.a. Gram matrix) represents pairwise
similarities for instances in the training set

 

k(x(1),x(1) ) k(x(1),x(2) ) ! k(x(1),x(m ) )
k(x(2),x(1) ) "
#

k(x(m ),x(1) ) k(x(m ),x(m ) )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

• it represents the information about the training set that is 
provided as input to the optimization process

Some  common kernels

• polynomial of degree d

• radial basis function (RBF)  (a.k.a. Gaussian) 

k(x, z) = x ⋅ z +1( )d

k(x, z) = x ⋅ z( )d

k(x, z) = exp −γ x − z 2( )

• polynomial of degree up to d
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The RBF kernel
• the feature mapping ϕ for the RBF kernel is infinite dimensional!

• recall that k(x, z) = ϕ(x) � ϕ (z)

k(x, z) = exp − 1
2
x − z 2⎛

⎝⎜
⎞
⎠⎟    for γ = 1

2

= exp − 1
2
x 2⎛

⎝⎜
⎞
⎠⎟ exp − 1

2
z 2⎛

⎝⎜
⎞
⎠⎟ exp x ⋅ z( )

= exp − 1
2
x 2⎛

⎝⎜
⎞
⎠⎟ exp − 1

2
z 2⎛

⎝⎜
⎞
⎠⎟

x ⋅ z( )n
n!n=0

∞

∑
⎛

⎝⎜
⎞

⎠⎟

from the Taylor series
expansion of exp(x � z)

The RBF kernel illustrated

γ = 10 γ = 1000γ = 100

Figures from openclassroom.stanford.edu (Andrew Ng)
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What makes a valid kernel?

• k(x, z) is a valid kernel if there is some ϕ such that

k(x, z) = φ(x) ⋅φ(z)

• this holds for a symmetric function k(x, z) if and only if the 
kernel matrix K is positive semidefinite for any training set 
(Mercer’s theorem)

∀v :vTKv ≥ 0definition of positive semidefinite (p.s.d):

Kernel algebra
• given a valid kernel, we can make new valid kernels using a variety 

of operators

φ(x) = φa (x),  φb (x)( )k(x,v) = ka (x,v)+ kb (x,v)

k(x,v) = γ  ka (x,v),  γ > 0 φ(x) = γ  φa (x)

k(x,v) = ka (x,v)kb (x,v) φl (x) = φai (x)φbj (x)

k(x,v) = xTAv,   A is p.s.d. φ(x) = LTx,  where A = LLT  

k(x,v) = f (x) f (v)ka (x,v) φ(x) = f (x)φa (x)

kernel composition mapping composition
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The power of kernel functions

• kernels can be designed and used to represent complex data 
types such as
• strings
• trees
• graphs
• etc.

• let’s consider a specific example

The protein classification task

Given: amino-acid sequence of a protein
Do: predict the family to which it belongs

GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVCVLAHHFGKEFTPPVQAAYAKVVAGVANALAHKYH
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The k-spectrum feature map

• we can represent sequences by counts of all of their k-mers

x = AKQDYYYYEI

ϕ(x) =( 0 , 0 , … , 1 , … , 1 ,    …   , 2 )
AAA AAC  …  AKQ  …  DYY     …    YYY  

• the dimension of ϕ(x) = |A|k where |A| is the size of the alphabet
• using 6-mers for protein sequences, |20|6 = 64 million
• almost all of the elements in ϕ(x) are 0 since a sequence of length 

l has at most l-k+1 k-mers

k = 3

The k-spectrum kernel

• consider the k-spectrum kernel applied to x and z with k = 3

x = AKQDYYYYEI

ϕ(x) =( 0 ,  … , 1 , … , 1 , …   , 0 )
AAA   …  AKQ … YEI …    YYY  

z = AKQIAKQYEI

ϕ(x) � ϕ(z) = 2 + 1 = 3

ϕ(z) =( 0 ,  … , 2 , … , 1 , …   , 0 )
AAA   …  AKQ … YEI …    YYY  
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(k, m)-mismatch feature map

• closely related protein sequences may have few exact matches, but 
many near matches

• the (k, m)-mismatch feature map uses the  k-spectrum representation, 
but allows up to m mismatches

x = AKQ

ϕ(x) =( 0, … , 1 , … , 1 , … , 1 ,    …   , 0 )
AAA    AAQ  …  AKQ  …  DKQ     …    YYY  

k = 3, m = 1

Using a trie to represent 3-mers
• example: representing all 3-mers of the sequence QAAKKQAKKY

A K Q

21 1 11 1 1

A K K Q A

K K Q Y AA K
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Computing the kernels efficiently 
with tries [Leslie et al., NIPS 2002]

k-spectrum kernel
• for each sequence

– build a trie representing  its k-mers
• compute kernel ϕ(x) � ϕ(z) by traversing trie for x using k-mers from z

– update kernel function when reaching a leaf

(k, m)-mismatch kernel
• for each sequence

• build a trie representing  its k-mers and also k-mers with at most m
mismatches

• compute kernel ϕ(x) � ϕ(z) by traversing trie for x using k-mers from z
– update kernel function when reaching a leaf

O km+1 A m x + z( )( )scales linearly with sequence length:

Support vector regression
• the SVM idea can also be applied in regression tasks
• an ε-insensitive error function specifies that a training instance 

is well explained if the model’s prediction is within ε of y(i)

ε-insensitive error function

 
y(i ) − wTx(i ) + b( ) = ε

 
wTx(i ) + b( )− y(i ) = ε

x

y
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Support vector regression

 

subject to constraints :   wTx(i ) + b( )− y(i ) ≤ ε + ξ (i )

                                        y(i ) − wTx(i ) + b( ) ≤ ε + ξ̂ (i )

                                        ξ (i ),ξ̂ (i ) ≥ 0      
for  i = 1,…,  m

  

minimize
w,b,ξ (1)…ξ (m ),ξ̂ (1)…ξ̂ (m )   1

2
 w 2

2 +C ξ (i ) + ξ̂ (i )( )
i=1

m

∑

slack variables allow predictions
for some training instances to be
off by more than ε

Learning theory justification for 
maximizing the margin

  
errorD (h) ≤ errorD(h)+

VC log 2m
VC

+1⎛
⎝⎜

⎞
⎠⎟ + log

4
δ

m

error on true
distribution

training set
error

VC-dimension
of hypothesis class

thus to minimize the VC dimension (and to improve the error bound) è
maximize the margin

 
VC ≤ 4R2

marginD (h)
2

Vapnik showed there is a connection between the margin and VC dimension

constant dependent on training data
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Comments on SVMs

• we can find solutions that are globally optimal (maximize the margin)
• because the learning task is framed as a convex optimization 

problem
• no local minima, in contrast to multi-layer neural nets

• there are two formulations of the optimization: primal and dual
• dual represents classifier decision in terms of support vectors
• dual enables the use of kernel functions

• we can use a wide range of optimization methods to learn SVM
• standard quadratic programming solvers
• SMO [Platt, 1999]
• linear programming solvers for some formulations
• etc.

Comments on SVMs
• kernels provide a powerful way to

• allow nonlinear decision boundaries

• represent/compare complex objects such as strings and trees

• incorporate domain knowledge into the learning task

• using the kernel trick, we can implicitly use high-dimensional mappings 
without explicitly computing them

• one SVM can represent only a binary classification task; multi-class 
problems handled using multiple SVMs and some encoding

• one class vs. rest

• ECOC

• etc.

• empirically, SVMs have shown state-of-the art accuracy for  many tasks

• the kernel idea can be extended to other tasks (anomaly detection, etc.)


