Bias-Variance analysis

Mark Craven and David Page Computer Sciences 760 Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts

- · estimation bias and variance
- the bias-variance decomposition

Bias and variance in one figure

Estimation bias and variance

- How will predictive accuracy (error) change as we vary k
 in k-NN?
- · Or as we vary the complexity of our decision trees?
- Why are regularization approaches like L₂ penalties and dropout often effective?
- the bias/variance decomposition of error can lend some insight into these questions

- note that this is a different sense of bias than in the term *inductive bias*

Defining bias and variance for regression tasks

- consider the task of learning a regression model f(x; D) given a training set $D = \{(\mathbf{x}^{(1)}, y^{(1)})...(\mathbf{x}^{(m)}, y^{(m)})\}$
- a natural measure of the error of f is

indicates the dependency of model on D

$$E[(y - f(x; D))^2]$$

where the expectation is taken with respect to the real-world distribution of instances

Defining bias and variance

• this can be rewritten as:

$$E[(y - f(x; D))^{2}] = E[(y - E[y|x])^{2}] + (f(x; D) - E[y|x))^{2}$$
error of f as a predictor of y
noise: variance of y given x; doesn't depend on D or f

Defining bias and variance

 now consider the expectation (over different data sets D) for the second term

$$\begin{split} E_D \Big[\big(f(\boldsymbol{x}; D) - E[y \,|\, \boldsymbol{x}] \big)^2 \Big] = \\ & \Big(E_D \big[f(\boldsymbol{x}; D) \big] - E[y \,|\, \boldsymbol{x}] \big)^2 & \text{bias} \\ & + E_D \Big[\big(f(\boldsymbol{x}; D) - E_D \big[f(\boldsymbol{x}; D) \big] \big)^2 \Big] & \text{variance} \end{split}$$

- bias: if on average f(x; D) differs from E[y | x] then f(x; D) is a biased estimator of E[y | x]
- variance: f(x; D) may be sensitive to D and vary a lot from its expected value

Bias/variance for polynomial interpolation

- the 1st order polynomial has high bias, low variance
- 50th order polynomial has low bias, high variance
- 4th order polynomial represents a good trade-off

Bias/variance trade-off for nearestneighbor regression

• consider using *k*-NN regression to learn a model of this surface in a 2-dimensional feature space

Bias/variance trade-off

 consider k-NN applied to digit recognition

Bias/variance discussion

- predictive error has two controllable components
 - expressive/flexible learners reduce *bias*, but increase *variance*
- for many learners we can trade-off these two components (e.g. via our selection of k in k-NN)
- the optimal point in this trade-off depends on the particular problem domain and training set size
- this is not necessarily a strict trade-off; e.g. with ensembles we can often reduce bias and/or variance without increasing the other term

Bias/variance discussion

the bias/variance analysis

- helps explain why simple learners can outperform more complex ones
- · helps understand and avoid overfitting