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Computational Learning Theory
(Part 1)

Mark Craven and David Page
Computer Sciences 760

Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed 
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture
you should understand the following concepts

• PAC learnability
• consistent learners and version spaces
• sample complexity
• PAC learnability in the agnostic setting
• the VC dimension
• sample complexity using the VC dimension
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PAC learning

• Overfitting happens because training error is a poor 
estimate of generalization error
→Can we infer something about generalization error 

from training error?

• Overfitting happens when the learner doesn’t see 
enough training instances
→Can we estimate how many instances are enough?
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Learning setting #1 

instance space 𝒳

+
+

+
-

-

-

• set of instances 𝒳
• set of hypotheses (models) H
• set of possible target concepts C
• unknown probability distribution 𝒟 over instances 

c∈C

Learning setting #1 

• learner is given a set D of training instances 〈 x, c(x) 〉
for some target concept c in C
• each instance x is drawn from distribution 𝒟
• class label c(x) is provided for each x

• learner outputs hypothesis h modeling c
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True error of a hypothesis

 errorD (h) ≡ Px∈D c(x) ≠ h(x)[ ]

c h

instance space 𝒳

+
+

+
-

-

-

the true error of hypothesis h refers to how often h is wrong on future 
instances drawn from 𝒟

Training error of a hypothesis

 
errorD(h) ≡ Px∈ D c(x) ≠ h(x)[ ] =

δ (c(x) ≠ h(x))
x∈ D
∑

D

the training error of hypothesis h refers to how often h is wrong on 
instances in the training set D

Can we bound error𝒟(h) in terms of errorD(h) ?
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Is approximately correct 
good enough?

To say that our learner L has learned a concept, should we 
require error𝒟(h) = 0 ?

this is not realistic:
• unless we’ve seen every possible instance, there may be multiple 

hypotheses that are consistent with the training set
• there is some chance our training sample will be unrepresentative

Probably approximately 
correct learning?

Instead, we’ll require that
• the error of a learned hypothesis h is bounded by some constant ε
• the probability of the learner failing to learn an accurate hypothesis 

is bounded by a constant δ
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Probably Approximately Correct (PAC) 
learning [Valiant, CACM 1984]

• Consider a class C of possible target concepts defined over a set of 
instances 𝒳 of length n, and a learner L using hypothesis space H

• C is PAC learnable by L using H if, for all
c∈ C
distributions 𝒟 over 𝒳
ε such that 0 < ε < 0.5
δ such that 0 < δ < 0.5

• learner L will, with probability at least (1-δ), output a hypothesis h∈ H
such that error𝒟(h) ≤ ε in time that is polynomial in

1/ε
1/δ
n
size(c)

PAC learning and 
consistency

• Suppose we can find hypotheses that are consistent with 
m training instances.  

• We can analyze PAC learnability by determining whether
1. m grows polynomially in the relevant parameters
2. the processing time per training example is 

polynomial
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Version spaces

• A hypothesis h is consistent with a set of training examples D of 
target concept if and only if h(x) = c(x) for each training example  
〈 x, c(x) 〉 in D

 consistent(h,D) ≡ ∀ x,c(x) ∈D( )  h(x) = c(x)

• The version space VSH,D with respect to hypothesis space H
and training set D, is the subset of hypotheses from H
consistent with all training examples in D

 VSH ,D ≡ h∈H | consistent(h,D){ }

Exhausting the 
version space

• The version space VSH,D is ε-exhausted with respect to c
and D if every hypothesis h∈ VSH,D has true error < ε

  ∀h∈VSH , D( )errorD (h) < ε
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Exhausting the version space
• Suppose that every h in our version space VSH,D is consistent 

with m training examples
• The probability that VSH,D is not ε-exhausted (i.e. that it 

contains some hypotheses that are not accurate enough)

≤ H e−εm

k(1− ε )m there might be k such hypotheses

H (1− ε )m k is bounded by |H|

 (1− ε ) ≤ e−ε  when 0 ≤ ε ≤1≤ H e−εm

(1− ε )m probability that some hypothesis with error > ε
is consistent with m training instances

Proof:

Sample complexity for finite 
hypothesis spaces

[Blumer et al., Information Processing Letters 1987]

• we want to reduce this probability below δ

H e−εm ≤ δ

m ≥ 1
ε
ln H + ln 1

δ
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

• solving for m we get

log dependence on H ε has stronger influence than δ
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PAC analysis example: 
learning conjunctions of Boolean literals

• each instance has n Boolean features
• learned hypotheses are of the form Y = X1 ∧ X2 ∧¬X5

How many training examples suffice to ensure that with prob ≥ 0.99, 
a consistent learner will return a hypothesis with error ≤ 0.05 ?

there are 3n hypotheses (each variable can be present and unnegated, 
present and negated, or absent) in H

m ≥ 1
.05

ln 3n( ) + ln 1
.01

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

for n=10, m ≥ 312               for n=100, m ≥ 2290

PAC analysis example: 
learning conjunctions of Boolean literals

• we’ve shown that the sample complexity is polynomial in relevant 
parameters: 1/ε,  1/δ, n

• to prove that Boolean conjunctions are PAC learnable, need to 
also show that we can find a consistent hypothesis in polynomial 
time (the FIND-S algorithm in Mitchell, Chapter 2 does this)

FIND-S:
initialize h to the most specific hypothesis   x1 ∧ ¬x1 ∧ x2∧¬x2 … xn∧ ¬xn
for each positive training instance x

remove from h any literal that is not satisfied by x
output hypothesis h
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PAC analysis example: 
learning decision trees of depth 2

• each instance has n Boolean features
• learned hypotheses are DTs of depth 2 

using only 2 variables

H  =  n
2

⎛
⎝⎜

⎞
⎠⎟
×16 

Xi

Xj Xj

1 0 1 1

# possible split choices # possible leaf labelings

=  n(n −1)
2

×16 =  8n(n −1)

PAC analysis example: 
learning decision trees of depth 2

• each instance has n Boolean features
• learned hypotheses are DTs of depth 2 

using only 2 variables

How many training examples suffice to ensure that with prob ≥ 0.99, 
a consistent learner will return a hypothesis with error ≤ 0.05 ?

m ≥ 1
.05

ln 8n2 − 8n( ) + ln 1
.01

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

for n=10, m ≥ 224               for n=100, m ≥ 318

Xi

Xj Xj

1 0 1 1
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PAC analysis example: 
K-term DNF is not PAC learnable

• each instance has n Boolean features
• learned hypotheses are of the form                                  where 

each Ti is a conjunction of n Boolean features or their negations
 Y = T1 ∨T2 ∨…∨Tk

|H| ≤ 3nk , so sample complexity is polynomial in the relevant parameters

m ≥ 1
ε

nk ln(3)+ ln 1
δ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

however, the computational complexity (time to find consistent h) is not 
polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be 
reduced to learning 3-term DNF)

What if the target concept is not in 
our hypothesis space?

• so far, we’ve been assuming that the target concept c is in our 
hypothesis space; this is not a very realistic assumption

• agnostic learning setting
• don’t assume c∈ H
• learner returns hypothesis h that makes fewest errors on 

training data
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Hoeffding bound

• we can approach the agnostic setting by using the Hoeffding bound
• let 𝑍$…𝑍% be a sequence of 𝑚	independent Bernoulli trials (e.g. coin 

flips), each with probability of success 𝐸 𝑍) = 𝑝
• let 𝑆 = 𝑍$ + ⋯+ 𝑍%

𝑃 𝑆 > 𝑝 + 𝜀 𝑚 ≤ 𝑒45%67

Agnostic PAC learning

• applying the Hoeffding bound to characterize the error rate of a given 
hypothesis

𝑃 𝑒𝑟𝑟𝑜𝑟𝒟 ℎ > 𝑒𝑟𝑟𝑜𝑟D ℎ + 𝜀 ≤ 𝑒45%67

• but our learner searches hypothesis space to find ℎ;<=>

𝑃 𝑒𝑟𝑟𝑜𝑟𝒟 ℎ;<=> > 𝑒𝑟𝑟𝑜𝑟D ℎ;<=> + 𝜀 ≤ 𝐻 𝑒45%67

• solving for the sample complexity when this probability is limited to 𝛿

𝑚 ≥
1
2𝜀5 𝑙𝑛 𝐻 + 𝑙𝑛

1
𝛿



13

What if the hypothesis space 
is not finite?

• Q: If H is infinite (e.g. the class of perceptrons), what measure of 
hypothesis-space complexity can we use in place of |H| ?

• A: the largest subset of 𝒳 for which H can guarantee zero training 
error, regardless of the target function.

this is known as the Vapnik-Chervonenkis dimension (VC-dimension)

• a set of instances D is shattered by a hypothesis space H iff for 
every dichotomy of D there is a hypothesis in H consistent with 
this dichotomy

• the VC dimension of H is the size of the largest set of instances 
that is shattered by H

Shattering and the VC dimension
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An infinite hypothesis space with a
finite VC dimension

consider: H is set of lines in 2D (i.e. perceptrons in 2D feature space)

1

can find an h consistent with 1 
instance no matter how it’s labeled

1

can find an h consistent with 2 
instances no matter labeling

2

An infinite hypothesis space with a
finite VC dimension

consider: H is set of lines in 2D

1

can find an h consistent with 3 
instances no matter labeling 
(assuming they’re not colinear)

2

3

+

cannot find an h consistent with 4 
instances for some labelings

-

-
+

can shatter 3 instances, but not 4 → the VC-dim(H) = 3
more generally, the VC-dim of hyperplanes in n dimensions = n+1
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VC dimension for finite hypothesis spaces

for finite H, VC-dim(H) ≤ log2|H|

Proof:
suppose VC-dim(H) = d
for d instances, 2d different labelings possible
therefore H must be able to represent 2d hypotheses
2d ≤ |H|
d = VC-dim(H) ≤ log2|H|

Sample complexity and the VC dimension

• using VC-dim(H) as a measure of complexity of H, we can derive 
the following bound [Blumer et al., JACM 1989]

m ≥ 1
ε
4 log2

2
δ

⎛
⎝⎜

⎞
⎠⎟ + 8VC-dim(H )log2

13
ε

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

can be used for both finite and infinite hypothesis spaces

m grows log × linear in ε (better than earlier bound)
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Lower bound on sample complexity
[Ehrenfeucht et al., Information & Computation 1989]

• there exists a distribution 𝒟 and target concept in C such that if the 
number of training instances given to L

m <max 1
ε
log 1

δ
⎛
⎝⎜

⎞
⎠⎟ ,
VC-dim(C)−1

32ε
⎡
⎣⎢

⎤
⎦⎥

then with probability at least δ, L outputs h such that errorD(h) > ε

Comments on PAC learning

• PAC analysis formalizes the learning task and allows for non-
perfect learning (indicated by ε and δ)

• finding a consistent hypothesis is sometimes easier for larger 
concept classes
• e.g. although k-term DNF is not PAC learnable, the more 

general class k-CNF is
• PAC analysis has been extended to explore a wide range of cases

• noisy training data
• learner allowed to ask queries
• restricted distributions (e.g. uniform) over 𝒟
• etc.

• most analyses are worst case
• sample complexity bounds are generally not tight


