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by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts
* PAC learnability
» consistent learners and version spaces
* sample complexity
« PAC learnability in the agnostic setting
+ the VC dimension
» sample complexity using the VC dimension
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PAC learning

» Overfitting happens because training error is a poor
estimate of generalization error

— Can we infer something about generalization error
from training error?

» Overfitting happens when the learner doesn’t see
enough training instances

— Can we estimate how many instances are enough?




Learning setting #1

instance space X

set of instances X
» set of hypotheses (models) H
» set of possible target concepts C
» unknown probability distribution D over instances

Learning setting #1

« learner is given a set D of training instances ( x, c(x) )
for some target concept c in C

* each instance x is drawn from distribution D
 class label ¢(x) is provided for each x

* learner outputs hypothesis 2 modeling ¢




True error of a hypothesis

the true error of hypothesis h refers to how often 4 is wrong on future
instances drawn from D

errory (h)= P, p[ c(x) # h(x)]

instance space X
c h

Training error of a hypothesis

the training error of hypothesis & refers to how often & is wrong on
instances in the training set D

Y 8(c(x) = h(x))
errory(h) = Py c(x) = h(x)] = =2

D

Can we bound errory(h) in terms of errorp(h) ?




|s approximately correct
good enough?

To say that our learner L has learned a concept, should we
require errorp(h) =0 ?

this is not realistic:

» unless we’ve seen every possible instance, there may be multiple
hypotheses that are consistent with the training set

» there is some chance our training sample will be unrepresentative

Probably approximately
correct learning? '

Instead, we’ll require that
+ the error of a learned hypothesis # is bounded by some constant ¢

+ the probability of the learner failing to learn an accurate hypothesis
is bounded by a constant




Probably Approximately Correct (PAC)
learning (vaiiant, cacm 1984]

» Consider a class C of possible target concepts defined over a set of
instances X of length n, and a learner L using hypothesis space H

* Cis PAC learnable by L using H if, for all
ce C
distributions D over X
esuchthat0O<e <0.5
dsuchthat0<d <0.5

* learner L will, with probability at least (1-9), output a hypothesis h € H
such that errory(h) < € in time that is polynomial in

1/e

1/0

n
size(c)

PAC learning and
consistency

+ Suppose we can find hypotheses that are consistent with
m training instances.

* We can analyze PAC learnability by determining whether
1. m grows polynomially in the relevant parameters

2. the processing time per training example is
polynomial




Version spaces

* A hypothesis % is consistent with a set of training examples D of
target concept if and only if 4(x) = ¢(x) for each training example
(x,c(x)) inD

consistent(h,D) = (‘v’(x,c(x)) € D) h(x)=c(x)
+ The version space VS, p, with respect to hypothesis space H
and training set D, is the subset of hypotheses from H

consistent with all training examples in D

VS, p={heH |consistent(h,D)}

Exhausting the
version space

 The version space VS is e-exhausted with respect to ¢
and D if every hypothesis h & VS, has true error < ¢

(‘v’h € VSH,D)errorD(h) <e€




Exhausting the version space

+ Suppose that every & in our version space VS, ; is consistent
with m training examples

* The probability that VS, is not e-exhausted (i.e. that it
contains some hypotheses that are not accurate enough)

s‘H‘e‘m

probability that some hypothesis with error > ¢

Proof: 1-¢)"
( ) is consistent with m training instances

k(1-¢)" there might be k such hypotheses
|H|(1-¢)"  kis bounded by IHI

s|H|e_g"’ (I-g)se*whenO=se=<1

Sample complexity for finite
hypothesis spaces

[Blumer et al., Information Processing Letters 1987]

» we want to reduce this probability below &

|H|e ™" <6

» solving for m we get
1 1
m2—| In|H|+In| <
e( 1] (5))

log dependence on H K ¢ has stronger influence than 6




PAC analysis example:
learning conjunctions of Boolean literals

« each instance has n Boolean features
* learned hypotheses are of the form Y = X, A X, A =X

How many training examples suffice to ensure that with prob = 0.99,
a consistent learner will return a hypothesis with error < 0.05 ?

there are 3" hypotheses (each variable can be present and unnegated,
present and negated, or absent) in H

m Zé(ln(3")+ln(ﬁ))

for n=10, m = 312 for n=100, m = 2290

PAC analysis example:
learning conjunctions of Boolean literals

» we’ve shown that the sample complexity is polynomial in relevant
parameters: 1/e, 1/8,n

» to prove that Boolean conjunctions are PAC learnable, need to
also show that we can find a consistent hypothesis in polynomial
time (the FIND-S algorithm in Mitchell, Chapter 2 does this)

FIND-S:
initialize h to the most specific hypothesis x; A =x; A x,A=x, ... x, A —x,
for each positive training instance x
remove from # any literal that is not satisfied by x
output hypothesis i




PAC analysis example:
learning decision trees of depth 2

« each instance has n Boolean features

» learned hypotheses are DTs of depth 2
using only 2 variables

|H| = [ ’; Jx16 = ”(”z‘l)xlé = 8n(n-1)

T

# possible split choices # possible leaf labelings

PAC analysis example:
learning decision trees of depth 2

« each instance has n Boolean features

» learned hypotheses are DTs of depth 2
using only 2 variables

How many training examples suffice to ensure that with prob = 0.99,
a consistent learner will return a hypothesis with error < 0.05 ?

m> € ln(8n2 - 8n)+ln(i)
05 01

for n=10, m = 224 for =100, m = 318
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PAC analysis example:
K-term DNF is not PAC learnable

» each instance has n Boolean features

» learned hypotheses are of the form Y =T, vT, v...vT, where
each T, is a conjunction of n Boolean features or their negations

IH < 3% | so sample complexity is polynomial in the relevant parameters

m2 l(nlcln(3)+ ln(l))
€ o

however, the computational complexity (time to find consistent #) is not
polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be
reduced to learning 3-term DNF)

What if the target concept is not in
our hypothesis space?

* so far, we've been assuming that the target concept ¢ is in our
hypothesis space; this is not a very realistic assumption

» agnostic learning setting
+ don'tassumec € H

* learner returns hypothesis / that makes fewest errors on
training data
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Hoeffding bound

we can approach the agnostic setting by using the Hoeffding bound

let Z;...Z,, be a sequence of m independent Bernoulli trials (e.g. coin
flips), each with probability of success E[Z;] = p

letS =Zy + -+ Zn,

P[S > (p + &)m] < e~2me’

Agnostic PAC learning

applying the Hoeffding bound to characterize the error rate of a given
hypothesis

P[errorp(h) > errorp(h) + 8] < g—2me?
but our learner searches hypothesis space to find hy g
2

Plerrorp(hpest) > errorp(hpest) + €| < |H|e™2™e

solving for the sample complexity when this probability is limited to §

> (tim) +1 (1)
m=oa2\M" "5
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What if the hypothesis space
is not finite?

* Q: If His infinite (e.g. the class of perceptrons), what measure of
hypothesis-space complexity can we use in place of 1HI ?

« A: the largest subset of X' for which H can guarantee zero training
error, regardless of the target function.

this is known as the Vapnik-Chervonenkis dimension (VC-dimension)

Shattering and the VC dimension -

+ aset of instances D is shattered by a hypothesis space H iff for
every dichotomy of D there is a hypothesis in H consistent with
this dichotomy

» the VC dimension of H is the size of the largest set of instances
that is shattered by H
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An infinite hypothesis space with a
finite VC dimension

consider: H is set of lines in 2D (i.e. perceptrons in 2D feature space)

can find an & consistent with 1 can find an % consistent with 2
instance no matter how it’s labeled instances no matter labeling
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An infinite hypothesis space with a
finite VC dimension

consider: H is set of lines in 2D

can find an & consistent with 3 cannot find an & consistent with 4

instances no matter labeling instances for some labelings
(assuming they’re not colinear)
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can shatter 3 instances, but not 4 - the VC-dim(#) = 3
more generally, the VC-dim of hyperplanes in n dimensions = n+1
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VC dimension for finite hypothesis spaces

for finite H, VC-dim(H) < log,|H|

Proof:
suppose VC-dim(H) =d
for d instances, 2¢ different labelings possible
therefore H must be able to represent 2¢ hypotheses
24 < |HI
d =VC-dim(H) < log,|HI

Sample complexity and the VC dimension

» using VC-dim(H) as a measure of complexity of H, we can derive
the following bound [Blumer et al., JACM 1989]

m= %(Mogz (%) +8VC-dim(H)log, ( 13)]

£

m grows log x linear in ¢ (better than earlier bound)

can be used for both finite and infinite hypothesis spaces
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Lower bound on sample complexity

[Ehrenfeucht et al., Information & Computation 1989]

there exists a distribution D and target concept in C such that if the
number of training instances given to L

1 ) VC-dim(C)— 1}

1
<max| —1 — |,
mem XL‘ Og(é 32¢

then with probability at least 0, L outputs & such that errory(h) > ¢

Comments on PAC learning

PAC analysis formalizes the learning task and allows for non-
perfect learning (indicated by ¢ and 6)

finding a consistent hypothesis is sometimes easier for larger
concept classes

* e.g. although k-term DNF is not PAC learnable, the more
general class k-CNF is

PAC analysis has been extended to explore a wide range of cases
* noisy training data
» learner allowed to ask queries
« restricted distributions (e.g. uniform) over D
* etc.
most analyses are worst case
sample complexity bounds are generally not tight
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