Computational Learning Theory (Part 1)

Mark Craven and David Page Computer Sciences 760 Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts

- PAC learnability
- consistent learners and version spaces
- · sample complexity
- PAC learnability in the agnostic setting
- the VC dimension
- · sample complexity using the VC dimension

NEWS IN PHOTOS

Experimental Band Theoretically Good

PAC learning

- Overfitting happens because training error is a poor estimate of generalization error
 - → Can we infer something about generalization error from training error?
- Overfitting happens when the learner doesn't see enough training instances
 - → Can we estimate how many instances are enough?

Learning setting #1

- set of instances X
- set of hypotheses (models) H
- set of possible target concepts C
- unknown probability distribution \mathcal{D} over instances

Learning setting #1

- learner is given a set D of training instances \(\lambda , c(x) \rangle \) for some target concept c in C
 - each instance x is drawn from distribution \mathcal{D}
 - class label c(x) is provided for each x
- learner outputs hypothesis h modeling c

True error of a hypothesis

the $true\ error$ of hypothesis h refers to how often h is wrong on future instances drawn from $\mathcal D$

$$error_{\mathcal{D}}(h) \equiv P_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Training error of a hypothesis

the $training\ error$ of hypothesis h refers to how often h is wrong on instances in the training set D

$$error_{\mathbb{D}}(h) \equiv P_{x \in \mathbb{D}} \Big[c(x) \neq h(x) \Big] = \frac{\displaystyle\sum_{x \in \mathbb{D}} \delta(c(x) \neq h(x))}{|\mathbb{D}|}$$

Can we bound $error_{\mathbb{D}}(h)$ in terms of $error_{\mathbb{D}}(h)$?

Is approximately correct good enough?

To say that our learner L has learned a concept, should we require $error_{\mathcal{D}}(h)=0$?

this is not realistic:

- unless we've seen every possible instance, there may be multiple hypotheses that are consistent with the training set
- there is some chance our training sample will be unrepresentative

Probably approximately correct learning?

Instead, we'll require that

- the error of a learned hypothesis h is bounded by some constant ε
- the probability of the learner failing to learn an accurate hypothesis is bounded by a constant δ

Probably Approximately Correct (PAC) learning [Valiant, CACM 1984]

- Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H
- C is PAC learnable by L using H if, for all

```
c \in C
distributions \mathcal{D} over \mathcal{X}
\varepsilon such that 0 < \varepsilon < 0.5
\delta such that 0 < \delta < 0.5
```

• learner L will, with probability at least $(1-\delta)$, output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \varepsilon$ in time that is polynomial in

 $1/\varepsilon$ $1/\delta$ nsize(c)

PAC learning and consistency

- Suppose we can find hypotheses that are consistent with m training instances.
- We can analyze PAC learnability by determining whether
 - $1. \, m$ grows polynomially in the relevant parameters
 - 2. the processing time per training example is polynomial

Version spaces

 A hypothesis h is consistent with a set of training examples D of target concept if and only if h(x) = c(x) for each training example \langle x, c(x) \rangle in D

$$consistent(h,D) \equiv (\forall \langle x,c(x)\rangle \in D) \ h(x) = c(x)$$

The version space VS_{H,D} with respect to hypothesis space H
and training set D, is the subset of hypotheses from H
consistent with all training examples in D

$$VS_{H,D} \equiv \{h \in H \mid consistent(h,D)\}$$

Exhausting the version space

• The version space $VS_{H,D}$ is ϵ -exhausted with respect to c and D if every hypothesis $h \in VS_{H,D}$ has true error $< \epsilon$

$$(\forall h \in VS_{H,D})error_{\mathcal{D}}(h) < \varepsilon$$

Exhausting the version space

- Suppose that every h in our version space $\mathit{VS}_{H,D}$ is consistent with m training examples
- The probability that $\mathit{VS}_{\mathit{H},\mathsf{D}}$ is $\underline{\mathsf{not}}$ $\epsilon\text{-exhausted}$ (i.e. that it contains some hypotheses that are not accurate enough)

$$\leq |H|e^{-\varepsilon m}$$

Proof: $(1-\varepsilon)^m$ probability that some hypothesis with error $> \varepsilon$ is consistent with *m* training instances

 $k(1-\varepsilon)^m$

there might be k such hypotheses

 $|H|(1-\varepsilon)^m$ k is bounded by |H|

 $\leq |H|e^{-\varepsilon m}$ $(1-\varepsilon) \leq e^{-\varepsilon}$ when $0 \leq \varepsilon \leq 1$

Sample complexity for finite hypothesis spaces

[Blumer et al., Information Processing Letters 1987]

we want to reduce this probability below δ

$$|H|e^{-\varepsilon m} \le \delta$$

solving for m we get

$$m \ge \frac{1}{\varepsilon} \left(\ln|H| + \ln\left(\frac{1}{\delta}\right) \right)$$

log dependence on H

PAC analysis example: learning conjunctions of Boolean literals

- each instance has n Boolean features
- learned hypotheses are of the form $Y = X_1 \land X_2 \land \neg X_5$

How many training examples suffice to ensure that with prob \geq 0.99, a consistent learner will return a hypothesis with error \leq 0.05?

there are 3^n hypotheses (each variable can be present and unnegated, present and negated, or absent) in H

$$m \ge \frac{1}{.05} \left(\ln \left(3^n \right) + \ln \left(\frac{1}{.01} \right) \right)$$

for $n=10, m \ge 312$

for $n=100, m \ge 2290$

PAC analysis example: learning conjunctions of Boolean literals

- we've shown that the sample complexity is polynomial in relevant parameters: $1/\epsilon$, $1/\delta$, n
- to prove that Boolean conjunctions are PAC learnable, need to also show that we can find a consistent hypothesis in polynomial time (the FIND-S algorithm in Mitchell, Chapter 2 does this)

FIND-S:

initialize h to the most specific hypothesis $x_1 \wedge \neg x_1 \wedge x_2 \wedge \neg x_2 \dots x_n \wedge \neg x_n$ for each positive training instance x

remove from h any literal that is not satisfied by x output hypothesis h

PAC analysis example: learning decision trees of depth 2

- each instance has *n* Boolean features
- learned hypotheses are DTs of depth 2 using only 2 variables

$$|H| = \binom{n}{2} \times 16 = \frac{n(n-1)}{2} \times 16 = 8n(n-1)$$

possible split choices

possible leaf labelings

PAC analysis example: learning decision trees of depth 2

- each instance has n Boolean features
- learned hypotheses are DTs of depth 2 using only 2 variables

How many training examples suffice to ensure that with prob \geq 0.99, a consistent learner will return a hypothesis with error \leq 0.05?

$$m \ge \frac{1}{.05} \left(\ln \left(8n^2 - 8n \right) + \ln \left(\frac{1}{.01} \right) \right)$$

for $n=10, m \ge 224$

for $n=100, m \ge 318$

PAC analysis example: *K*-term DNF is not PAC learnable

- each instance has n Boolean features
- learned hypotheses are of the form $Y = T_1 \vee T_2 \vee ... \vee T_k$ where each T_i is a conjunction of n Boolean features or their negations

 $|H| \le 3^{nk}$, so sample complexity is polynomial in the relevant parameters

$$m \ge \frac{1}{\varepsilon} \left(nk \ln(3) + \ln\left(\frac{1}{\delta}\right) \right)$$

however, the computational complexity (time to find consistent h) is not polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be reduced to learning 3-term DNF)

What if the target concept is not in our hypothesis space?

- so far, we've been assuming that the target concept c is in our hypothesis space; this is not a very realistic assumption
- · agnostic learning setting
 - don't assume $c \in H$
 - learner returns hypothesis h that makes fewest errors on training data

Hoeffding bound

- · we can approach the agnostic setting by using the Hoeffding bound
- let $Z_1...Z_m$ be a sequence of m independent Bernoulli trials (e.g. coin flips), each with probability of success $E[Z_i] = p$
- let $S = Z_1 + \dots + Z_m$

$$P[S > (p + \varepsilon)m] \le e^{-2m\varepsilon^2}$$

Agnostic PAC learning

applying the Hoeffding bound to characterize the error rate of a given hypothesis

$$P\big[error_{\mathcal{D}}(h) > error_{D}(h) + \varepsilon\big] \leq e^{-2m\varepsilon^2}$$

• but our learner searches hypothesis space to find h_{best}

$$P[error_{\mathcal{D}}(h_{best}) > error_{\mathcal{D}}(h_{best}) + \varepsilon] \le |H|e^{-2m\varepsilon^2}$$

- solving for the sample complexity when this probability is limited to δ

$$m \ge \frac{1}{2\varepsilon^2} \left(\ln|H| + \ln\left(\frac{1}{\delta}\right) \right)$$

What if the hypothesis space is not finite?

- **Q:** If *H* is infinite (e.g. the class of perceptrons), what measure of hypothesis-space complexity can we use in place of |*H*|?
- **A:** the largest subset of \mathcal{X} for which H can guarantee zero training error, regardless of the target function.

this is known as the Vapnik-Chervonenkis dimension (VC-dimension)

Shattering and the VC dimension

- a set of instances D is shattered by a hypothesis space H iff for every dichotomy of D there is a hypothesis in H consistent with this dichotomy
- the ${\it VC\ dimension}$ of ${\it H}$ is the size of the largest set of instances that is shattered by ${\it H}$

An infinite hypothesis space with a finite VC dimension

consider: *H* is set of lines in 2D (i.e. perceptrons in 2D feature space)

can find an *h* consistent with 1 instance no matter how it's labeled

can find an h consistent with 2 instances no matter labeling

An infinite hypothesis space with a finite VC dimension

consider: H is set of lines in 2D

can find an *h* consistent with 3 instances no matter labeling (assuming they're not colinear)

 $\frac{\text{cannot find an } h \text{ consistent with 4}}{\text{instances for some labelings}}$

can shatter 3 instances, but not $4 \rightarrow$ the VC-dim(H) = 3 more generally, the VC-dim of hyperplanes in n dimensions = n+1

VC dimension for finite hypothesis spaces

```
for finite H, VC-dim(H) \le \log_2 |H|
```

Proof:

suppose VC-dim(H) = dfor d instances, 2^d different labelings possible therefore H must be able to represent 2^d hypotheses $2^d \le |H|$ $d = \text{VC-dim}(H) \le \log_2 |H|$

Sample complexity and the VC dimension

 using VC-dim(H) as a measure of complexity of H, we can derive the following bound [Blumer et al., JACM 1989]

$$m \ge \frac{1}{\varepsilon} \left(4 \log_2 \left(\frac{2}{\delta} \right) + 8 \text{VC-dim}(H) \log_2 \left(\frac{13}{\varepsilon} \right) \right)$$

m grows log × linear in ε (better than earlier bound)

can be used for both finite and infinite hypothesis spaces

Lower bound on sample complexity

[Ehrenfeucht et al., Information & Computation 1989]

 there exists a distribution D and target concept in C such that if the number of training instances given to L

$$m < \max \left[\frac{1}{\varepsilon} \log \left(\frac{1}{\delta} \right), \frac{\text{VC-dim}(C) - 1}{32\varepsilon} \right]$$

then with probability at least δ , L outputs h such that $error_D(h) > \varepsilon$

Comments on PAC learning

- PAC analysis formalizes the learning task and allows for non-perfect learning (indicated by ε and δ)
- finding a consistent hypothesis is sometimes easier for larger concept classes
 - e.g. although k-term DNF is not PAC learnable, the more general class k-CNF is
- · PAC analysis has been extended to explore a wide range of cases
 - · noisy training data
 - · learner allowed to ask queries
 - restricted distributions (e.g. uniform) over \mathcal{D}
 - · etc.
- most analyses are worst case
- · sample complexity bounds are generally not tight