Computational Learning Theory
(Part 1)

Mark Craven
Computer Sciences 760
Fall 2016

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts
• PAC learnability
• consistent learners and version spaces
• sample complexity
• PAC learnability in the agnostic setting
• the VC dimension
• sample complexity using the VC dimension
PAC learning

- Overfitting happens because training error is a poor estimate of generalization error
 → Can we infer something about generalization error from training error?

- Overfitting happens when the learner doesn’t see enough training instances
 → Can we estimate how many instances are enough?
Learning setting #1

- set of instances \mathcal{X}
- set of hypotheses (models) H
- set of possible target concepts C
- unknown probability distribution \mathcal{D} over instances

Learning setting #1

- learner is given a set D of training instances $\langle x, c(x) \rangle$ for some target concept c in C
 - each instance x is drawn from distribution \mathcal{D}
 - class label $c(x)$ is provided for each x
- learner outputs hypothesis h modeling c
True error of a hypothesis

The *true error* of hypothesis h refers to how often h is wrong on future instances drawn from \mathcal{D}

$$\text{error}_\mathcal{D}(h) \equiv P_{x \in \mathcal{D}} [c(x) \neq h(x)]$$

Training error of a hypothesis

The *training error* of hypothesis h refers to how often h is wrong on instances in the training set \mathcal{D}

$$\text{error}_\mathcal{D}(h) \equiv P_{x \in \mathcal{D}} [c(x) \neq h(x)] = \frac{\sum_{x \in \mathcal{D}} \delta(c(x) \neq h(x))}{|\mathcal{D}|}$$

Can we bound $\text{error}_\mathcal{D}(h)$ in terms of $\text{error}_\mathcal{D}(h)$?
Is approximately correct good enough?

To say that our learner L has learned a concept, should we require $\text{error}_D(h) = 0$?

This is not realistic:
- unless we’ve seen every possible instance, there may be multiple hypotheses that are consistent with the training set
- there is some chance our training sample will be unrepresentative

Probably approximately correct learning?

Instead, we’ll require that
- the error of a learned hypothesis h is bounded by some constant ϵ
- the probability of the learner failing to learn an accurate hypothesis is bounded by a constant δ
Probably Approximately Correct (PAC) learning [Valiant, CACM 1984]

- Consider a class C of possible target concepts defined over a set of instances \mathcal{X} of length n, and a learner L using hypothesis space H

- C is PAC learnable by L using H if, for all $c \in C$
 - distributions \mathcal{D} over \mathcal{X}
 - ε such that $0 < \varepsilon < 0.5$
 - δ such that $0 < \delta < 0.5$

- learner L will, with probability at least $(1 - \delta)$, output a hypothesis $h \in H$ such that $\text{error}_\mathcal{D}(h) \leq \varepsilon$ in time that is polynomial in
 - $1/\varepsilon$
 - $1/\delta$
 - n
 - $\text{size}(c)$

PAC learning and consistency

- Suppose we can find hypotheses that are consistent with m training instances.
- We can analyze PAC learnability by determining whether
 1. m grows polynomially in the relevant parameters
 2. the processing time per training example is polynomial
Version spaces

• A hypothesis h is consistent with a set of training examples D of target concept if and only if $h(x) = c(x)$ for each training example $\langle x, c(x) \rangle$ in D

$$consistent(h, D) \equiv \left(\forall \langle x, c(x) \rangle \in D \right) h(x) = c(x)$$

• The version space $VS_{H,D}$ with respect to hypothesis space H and training set D, is the subset of hypotheses from H consistent with all training examples in D

$$VS_{H,D} \equiv \{ h \in H \mid consistent(h, D) \}$$

Exhausting the version space

• The version space $VS_{H,D}$ is ϵ-exhausted with respect to c and D if every hypothesis $h \in VS_{H,D}$ has true error $< \epsilon$

$$\left(\forall h \in VS_{H,D} \right) error_D(h) < \epsilon$$
Exhausting the version space

- Suppose that every h in our version space $V S_{H,D}$ is consistent with m training examples
- The probability that $V S_{H,D}$ is not ϵ-exhausted (i.e. that it contains some hypotheses that are not accurate enough)

$$\leq |H|e^{-\epsilon m}$$

Proof:

- $(1 - \epsilon)^m$ probability that some hypothesis with error $\geq \epsilon$
- is consistent with m training instances

$$k(1 - \epsilon)^m$$ there might be k such hypotheses

$$|H|(1 - \epsilon)^m$$ k is bounded by $|H|$,

$$\leq |H|e^{-\epsilon m} \quad (1 - \epsilon) \leq e^{-\epsilon} \text{ when } 0 \leq \epsilon \leq 1$$

Sample complexity for finite hypothesis spaces

- we want to reduce this probability below δ

$$|H|e^{-\epsilon m} \leq \delta$$

- solving for m we get

$$m \geq \frac{1}{\epsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)$$

log dependence on H ϵ has stronger influence than δ
PAC analysis example: learning conjunctions of Boolean literals

- each instance has n Boolean features
- learned hypotheses are of the form $Y = X_1 \land X_2 \land \neg X_3$

How many training examples suffice to ensure that with prob ≥ 0.99, a consistent learner will return a hypothesis with error ≤ 0.05?

There are 3^n hypotheses (each variable can be present and unnegated, present and negated, or absent) in H

$$m \geq \frac{1}{.05} \left(\ln(3^n) + \ln\left(\frac{1}{.01}\right) \right)$$

For $n=10$, $m \geq 312$
For $n=100$, $m \geq 2290$

PAC analysis example: learning conjunctions of Boolean literals

- we’ve shown that the sample complexity is polynomial in relevant parameters: $1/\epsilon$, $1/\delta$, n

- to prove that Boolean conjunctions are PAC learnable, need to also show that we can find a consistent hypothesis in polynomial time (the FIND-S algorithm in Mitchell, Chapter 2 does this)

FIND-S:
- initialize h to the most specific hypothesis $x_1 \land \neg x_1 \land x_2 \land \neg x_2 \ldots x_n \land \neg x_n$
- for each positive training instance x
 - remove from h any literal that is not satisfied by x
- output hypothesis h
PAC analysis example: learning decision trees of depth 2

- each instance has \(n \) Boolean features
- learned hypotheses are DTs of depth 2 using only 2 variables

\[
|H| = \binom{n}{2} \times 16 = \frac{n(n-1)}{2} \times 16 = 8n(n-1)
\]

\(\# \) possible split choices \(\# \) possible leaf labelings

How many training examples suffice to ensure that with prob \(\geq 0.99 \), a consistent learner will return a hypothesis with error \(\leq 0.05 \)?

\[
m \geq \frac{1}{.05} \left(\ln(8n^2 - 8n) + \ln \left(\frac{1}{.01} \right) \right)
\]

for \(n=10 \), \(m \geq 224 \)
for \(n=100 \), \(m \geq 318 \)
PAC analysis example:
K-term DNF is not PAC learnable

- each instance has *n* Boolean features
- learned hypotheses are of the form \(Y = T_1 \lor T_2 \lor \ldots \lor T_k \) where each \(T_i \) is a conjunction of *n* Boolean features or their negations

\(|H| \leq 3^m\), so sample complexity is polynomial in the relevant parameters

\[m \geq \frac{1}{\varepsilon} \left(nk \ln(3) + \ln \left(\frac{1}{\delta} \right) \right) \]

however, the computational complexity (time to find consistent \(h \)) is not polynomial in \(m \) (e.g. graph 3-coloring, an NP-complete problem, can be reduced to learning 3-term DNF)

What if the target concept is not in our hypothesis space?

- so far, we’ve been assuming that the target concept \(c \) is in our hypothesis space; this is not a very realistic assumption

- *agnostic learning* setting
 - *don’t assume* \(c \in H \)
 - learner returns hypothesis \(h \) that makes fewest errors on training data
Hoeffding bound

• we can approach the agnostic setting by using the Hoeffding bound
• let $Z_1 \ldots Z_m$ be a sequence of m independent Bernoulli trials (e.g. coin flips), each with probability of success $E[Z_i] = p$
• let $S = Z_1 + \cdots + Z_m$

$$P[S > (p + \varepsilon)m] \leq e^{-2m\varepsilon^2}$$

Agnostic PAC learning

• applying the Hoeffding bound to characterize the error rate of a given hypothesis

$$P[error_D(h) > error_D(h) + \varepsilon] \leq e^{-2m\varepsilon^2}$$

• but our learner searches hypothesis space to find h_{best}

$$P[error_D(h_{best}) > error_D(h_{best}) + \varepsilon] \leq |H|e^{-2m\varepsilon^2}$$

• solving for the sample complexity when this probability is limited to δ

$$m \geq \frac{1}{2\varepsilon^2} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)$$
What if the hypothesis space is not finite?

• **Q:** If H is infinite (e.g. the class of perceptrons), what measure of hypothesis-space complexity can we use in place of $|H|$?

• **A:** the largest subset of \mathcal{X} for which H can guarantee zero training error, regardless of the target function.

 this is known as the Vapnik-Chervonenkis dimension (VC-dimension)

Shattering and the VC dimension

• a set of instances D is *shattered* by a hypothesis space H iff for every dichotomy of D there is a hypothesis in H consistent with this dichotomy

• the *VC dimension* of H is the size of the largest set of instances that is shattered by H
An infinite hypothesis space with a finite VC dimension

consider: H is set of lines in 2D (i.e. perceptrons in 2D feature space)

can find an h consistent with 1 instance no matter how it’s labeled

can find an h consistent with 2 instances no matter labeling

An infinite hypothesis space with a finite VC dimension

consider: H is set of lines in 2D

can find an h consistent with 3 instances no matter labeling (assuming they’re not colinear)
cannot find an h consistent with 4 instances for some labelings

can shatter 3 instances, but not 4 → the VC-dim(H) = 3
more generally, the VC-dim of hyperplanes in n dimensions = $n+1$
VC dimension for finite hypothesis spaces

for finite H, $VC\text{-dim}(H) \leq \log_2 |H|$

Proof:

suppose $VC\text{-dim}(H) = d$

for d instances, 2^d different labelings possible

due to H must be able to represent 2^d hypotheses

$2^d \leq |H|$

$d = VC\text{-dim}(H) \leq \log_2 |H|$

Sample complexity and the VC dimension

- using $VC\text{-dim}(H)$ as a measure of complexity of H, we can derive
 the following bound [Blumer et al., JACM 1989]

$$m \geq \frac{1}{\varepsilon} \left(4 \log_2 \left(\frac{2}{\delta} \right) + 8 VC\text{-dim}(H) \log_2 \left(\frac{13}{\varepsilon} \right) \right)$$

m grows log x linear in ε (better than earlier bound)

can be used for both finite and infinite hypothesis spaces
Lower bound on sample complexity

[Ehrenfeucht et al., *Information & Computation* 1989]

- there exists a distribution \mathcal{D} and target concept in C such that if the number of training instances given to L

$$m < \max \left[\frac{1}{\epsilon} \log \left(\frac{1}{\delta} \right), \frac{\text{VC-dim}(C) - 1}{32\epsilon} \right]$$

then with probability at least δ, L outputs h such that $\text{err}_D(h) > \epsilon$

Comments on PAC learning

- PAC analysis formalizes the learning task and allows for non-perfect learning (indicated by ϵ and δ)
- finding a consistent hypothesis is sometimes easier for larger concept classes
 - e.g. although k-term DNF is not PAC learnable, the more general class k-CNF is
- PAC analysis has been extended to explore a wide range of cases
 - noisy training data
 - learner allowed to ask queries
 - restricted distributions (e.g. uniform) over \mathcal{D}
 - etc.
- most analyses are worst case
- sample complexity bounds are generally not tight