Computational Learning Theory
(Part 2)

Mark Craven and David Page
Computer Sciences 760
Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts
* the on-line learning setting
» the mistake bound model of learnability
+ the Halving algorithm
« the Weighted Majority algorithm

Learning setting #2: on-line learning

Now let’s consider learning in the on-line learning setting:

forr=1...
learner receives instance x(*
learner predicts h(x®)

learner receives label c(x) and updates model &

The mistake bound model of learning

How many mistakes will an on-line learner
make in its predictions before it learns the
target concept?

the mistake bound model of learning
addresses this question

No results for |_Honalulu |
No results for | Honoloulou]

No results for I Hawaai |

"z
OH, FORGET - \Qll 7}}-@ =

LETS JUST GO VISIT %
MY MOTHER IN FARGO:

S

Y
4
q \

S

Mistake bound example:
learning conjunctions with FIND-S

consider the learning task
+ training instances are represented by n Boolean features
» target concept is conjunction of up to n Boolean (negated) literals

FIND-S:
initialize & to the most specific hypothesis x;, A =x; Ax,A=x, ... x,A —x,
for each positive training instance x
remove from k any literal that is not satisfied by x
output hypothesis /1

Example: using FIND-S to learn conjunctions

* suppose we're learning a concept representing the sports that
someone likes

» each instance describes a sport using Boolean features

Snow (is it done on snow?)
Water

Road

Mountain

Skis

Board

Ball (does it involve a ball?)

Example: using FIND-S to learn conjunctions

t=0 h: snow A\ —isnow A water \-—water)\ road N\ —road /\
mountain /\ ~mountain /\ skis /\ —skis N\ board
A=board N ball N\—ball

t=1 Xx: snow, “water, —road, mountain, skis, “board, —ball
h(x)=false c(x)=true
h: snow A\ —water \ —road)\ mountain)\ skis N\ —board /N —ball

t=2 Xx.: snow, water, —road, “mountain, skis, “board, =ball
hx)=false c¢(x)="false

t=3 Xx: snow, “water, —road, mountain, —skis, board, —ball
h(x)=false c(x)=true
h: snow A —water N\ —road N\ mountain /\ —ball

Mistake bound example:
learning conjunctions with FIND-S

the maximum # of mistakes FIND-S will make =n + 1

Proof:

» FIND-S will never mistakenly classify a negative (h is always at least
as specific as the target concept)

* initial 4 has 2n literals

+ the first mistake on a positive instance will reduce the initial
hypothesis to n literals

» each successive mistake will remove at least one literal from &

Halving algorithm

/I initialize the version space to contain allh € H
VS, < H

fort< 1to T do
given training instance x(*

/I make prediction for x
W (x®) = MajorityVote(VSs,, x®)

given label c(x?)

/I eliminate all wrong & from version space (reduce the
size of the VS by at least half on mistakes)

VS, € {h € VS,: h(x®) = c(x?) }

return VS,,,;

Mistake bound for the Halving algorithm

the maximum # of mistakes the Halving algorithm will make = [10g2|H|J

Proof: W
 initial version space contains |HI hypotheses
» each mistake reduces version space by at least half

l a J is the largest integer
not greater than a

Optimal mistake bound
[Littlestone, Machine Learning 1987]

let C be an arbitrary concept class

VC(C) s M, (C) = M, (C) = Tog,(|C])

[N

mistakes by best algorithm # mistakes by Halving algorithm
(for hardest ¢ € C, and
hardest training sequence)

The Weighted Majority algorithm

given: a set of predictors A={q, ...a,},learningrate 0 <3 < 1

for all i initialize w; < 1
forr< 1toTdo
given training instance x®
/I make prediction for x
initialize g,and ¢, t0 0
for each predictor q;
if a,(x) =0 then g, <q, + w;
if a(x) =1then g, <q; + w;
if g;> g, then h(x®) =1
else if g,> g, then h(x®?) < 0
else if g,= g, then h(x®) & 0 or 1 randomly chosen

given label c(x?)
// update hypothesis
for each predictor a; do
if a,(x) = c(x®) then w; & B w;

The Weighted Majority algorithm

» predictors can be individual features or hypotheses or learning
algorithms

+ if the predictors are all » € H, then WM is like a weighted voting
version of the Halving algorithm

* WM learns a linear separator, like a perceptron

* weight updates are multiplicative instead of additive (as in
perceptron/neural net training)

» multiplicative is better when there are many features
(predictors) but few are relevant

+ additive is better when many features are relevant
» approach can handle noisy training data

Relative mistake bound for
Weighted Majority

Let
* D be any sequence of training instances
* A be any set of n predictors
* k be minimum number of mistakes made by best predictor in A
for training sequence D

» the number of mistakes over D made by Weighted Majority using
B =1/2 is at most

24(k +log, n)

Comments on mistake bound learning

we've considered mistake bounds for learning the target concept
exactly

there are also analyses that consider the number of mistakes until a
concept is PAC learned

some of the algorithms developed in this line of research have had
practical impact (e.g. Weighted Majority, Winnow)
[Blum, Machine Learning 1997]

