# Machine Learning Computer Sciences 760 Spring 2018

www.biostat.wisc.edu/~craven/cs760/

### Class enrollment



- typically the class is limited to 30
- we've allowed 90 to register
- ~ 70 are on the waiting list
- unfortunately, many on the waiting list will not be able to enroll
- but 760 is now offered every semester

### Instructors

#### Mark Craven

email: craven@biostat.wisc.edu

office hours: 3-4:30 Wednesday, or by appointment

office: 4775A Medical Sciences Center



#### **David Page**

email: page@biostat.wisc.edu

office hours: 2:30-4 Friday, or by appointment office hours room: 1153/4 Discovery Building



### Finding my office

- 4775A Medical Sciences Center
- easiest to enter from Charter St. and take elevator immediately to your right



### **TAs**

#### **Daniel Griffin**

email: dgriffin@cs.wisc.edu

office hours: 11:00-noon Monday and Wednesday

office: 4384 Computer Sciences

#### Viswesh Periyasamy

email: viswesh@cs.wisc.edu

office hours: 4:00-5:00 Tuesday and Thursday

office: 4710 Medical Sciences Center

### Monday, Wednesday and Friday?

- we'll have 28 lectures in all, just like a standard TR class
- · most weeks we won't meet on Fridays
- · but we will meet for the first three Fridays
- · see the schedule on the course page

### **Expected background**

- CS 540 (Intro to Artificial Intelligence) or equivalent
  - search
  - first-order logic
  - unification
  - deduction
- good programming skills
- basics of probability
- · calculus, including partial derivatives

### Learning objectives

- 1. Students will understand what a learning system should do.
- 2. Students will distinguish among a variety of learning settings: supervised learning, unsupervised learning, reinforcement learning, active learning.
- 3. Students will employ a broad toolbox of machine-learning methods: decision trees, nearest neighbor, linear and logistic regression, neural nets, Bayesian networks, SVMs, ensemble methods.
- 4. Students will understand fundamental underlying theory: biasvariance tradeoff, PAC learning, mistake-bound theory.
- Students will know how to characterize how well learning systems work, and they will employ sound experimental methodology for evaluating learning systems: cross validation, ROC and PR curves, hypothesis testing.

### Course requirements

- daily quizzes: ~14%
- 4 homework assignments: ~36%
  - programming
  - computational experiments (e.g. measure the effect of varying parameter *x* in algorithm *y*)
  - some written exercises
- final exam: ~30%
- group project (4-5 students per group): ~20%

### TopHat for quizzes

- · we will use TopHat for in-class quizzes
- each student will have to set up an account and purchase a subscription (\$16 for the semester, \$20 for the year)
- see https://kb.wisc.edu/luwmad/page.php?id=59937

### Programming assignments

· for the programming assignments, you can use

С

C++

Java

Perl

Python

R

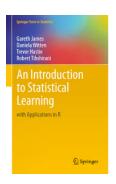
- · programs must be callable from the command line
- programs must run on the CS department Linux servers

### Course readings

#### Buy one of two recommended books

- Machine Learning. T. Mitchell. McGraw Hill, 1997.
- An Introduction to Statistical Learning. G. James, D. Witten, T. Hastie, R. Tibshirani, Springer 2017.

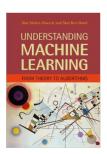


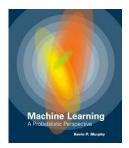


### Course readings

#### Also readings from two on-line books

- Machine Learning: A Probabilistic Perspective. K. Murphy. MIT Press, 2012
- Understanding Machine Learning: From Theory to Algorithms.
   S. Shalev-Shwartz and S. Ben-David. Cambridge University Press, 2014.

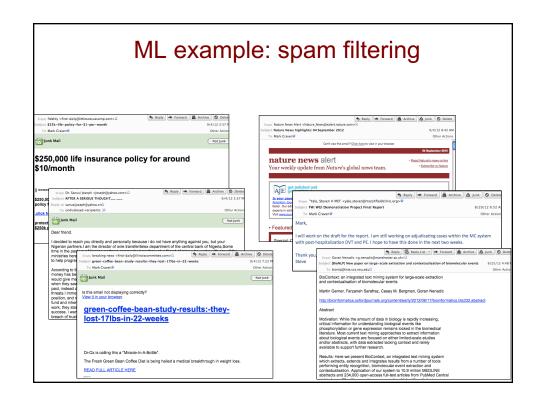




· additional on-line articles, surveys, and chapters

### What is machine learning?

- the study of algorithms that improve their performance P at some task T with experience E
- to have a well defined learning task, we must specify: < P, T, E >

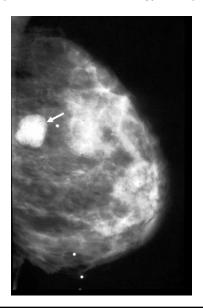


### ML example: spam filtering

- ullet T: given new mail message, classify as spam vs. other
- P: minimize misclassification costs
- ullet : previously classified (filed) messages

### ML example: mammography

[Burnside et al., Radiology 2009]



### ML example: mammography

- T: given new mammogram, classify each abnormality as benign vs. malignant
- *P* : minimize misclassification costs
- E: previously encountered patient histories (mammograms + subsequent outcomes)

### ML example: predictive text input



### ML example: predictive text input

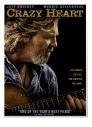
- *T* : given (partially) typed word, predict the word the user intended to type
- *P* : minimize misclassifications
- *E* : words previously typed by the user (+ lexicon of common words + knowledge of keyboard layout)



### ML example: Netflix Prize













### ML example: Netflix

- T: given a user/movie pair, predict the user's rating (1-5 stars) of the movie
- P: minimize difference between predicted and actual rating
- $\bullet$  E: histories of previously rated movies (user/movie/rating triples)

## ML example: reinforcement learning to control an autonomous helicopter



video of Stanford University autonomous helicopter from http://heli.stanford.edu/

### ML example: autonomous helicopter

- T: given a measurement of the helicopter's current state (orientation sensor, GPS, cameras), select an adjustment of the controls
- *P* : maximize reward (intended trajectory + penalty function)
- *E* : state, action and reward triples from previous demonstration flights

### Assignment

- for Friday, read
  - Chapter 1 of Mitchell or
  - Chapter 1 of Murphy or
  - Chapter 1 and Section 2.1 of James et al.
  - article by Dietterich on web site
- set up TopHat account
- check out www.biostat.wisc.edu/~craven/cs760/