Class enrollment

- typically the class is limited to 30
- we’ve allowed 90 to register
- ~ 70 are on the waiting list

- unfortunately, many on the waiting list will not be able to enroll
- but 760 is now offered every semester
Instructors

Mark Craven
email: craven@biostat.wisc.edu
office hours: 3-4:30 Wednesday, or by appointment
office: 4775A Medical Sciences Center

David Page
email: page@biostat.wisc.edu
office hours: 2:30-4 Friday, or by appointment
office hours room: 1153/4 Discovery Building

Finding my office

- 4775A Medical Sciences Center
- easiest to enter from Charter St. and take elevator immediately to your right

enter here
TAs

Daniel Griffin
email: dgriffin@cs.wisc.edu
office hours: 11:00-noon Monday and Wednesday
office: 4384 Computer Sciences

Viswesh Periyasamy
email: viswesh@cs.wisc.edu
office hours: 4:00-5:00 Tuesday and Thursday
office: 4710 Medical Sciences Center

Monday, Wednesday and Friday?

- we'll have 28 lectures in all, just like a standard TR class
- most weeks we won’t meet on Fridays
- but we will meet for the first three Fridays
- see the schedule on the course page
Expected background

- CS 540 (Intro to Artificial Intelligence) or equivalent
 - search
 - first-order logic
 - unification
 - deduction

- good programming skills

- basics of probability

- calculus, including partial derivatives

Learning objectives

1. Students will understand what a learning system should do.

2. Students will distinguish among a variety of learning settings: supervised learning, unsupervised learning, reinforcement learning, active learning.

3. Students will employ a broad toolbox of machine-learning methods: decision trees, nearest neighbor, linear and logistic regression, neural nets, Bayesian networks, SVMs, ensemble methods.

4. Students will understand fundamental underlying theory: bias-variance tradeoff, PAC learning, mistake-bound theory.

5. Students will know how to characterize how well learning systems work, and they will employ sound experimental methodology for evaluating learning systems: cross validation, ROC and PR curves, hypothesis testing.
Course requirements

- daily quizzes: ~14%
- 4 homework assignments: ~36%
 - programming
 - computational experiments (e.g. measure the effect of varying parameter x in algorithm y)
 - some written exercises
- final exam: ~30%
- group project (4-5 students per group): ~20%

TopHat for quizzes

- we will use TopHat for in-class quizzes
- each student will have to set up an account and purchase a subscription ($16 for the semester, $20 for the year)
- see https://kb.wisc.edu/luwmad/page.php?id=59937
Programming assignments

• for the programming assignments, you can use
 C
 C++
 Java
 Perl
 Python
 R

• programs must be callable from the command line

• programs must run on the CS department Linux servers

Course readings

Buy one of two recommended books

Course readings

Also readings from two on-line books

- additional on-line articles, surveys, and chapters

What is machine learning?

- the study of algorithms that improve their performance \(P \) at some task \(T \) with experience \(E \)

- to have a well defined learning task, we must specify: \(< P, T, E > \)
ML example: spam filtering

$250,000$ life insurance policy for around 16month

green-coffee-bean-study-results-they-lost-17lbs-in-22-weeks

ML example: spam filtering

- T: given new mail message, classify as spam vs. other
- P: minimize misclassification costs
- E: previously classified (filed) messages
ML example: mammography
[Burnside et al., Radiology 2009]

- T: given new mammogram, classify each abnormality as benign vs. malignant
- P: minimize misclassification costs
- E: previously encountered patient histories (mammograms + subsequent outcomes)
ML example: predictive text input

- T: given (partially) typed word, predict the word the user intended to type
- P: minimize misclassifications
- E: words previously typed by the user (+ lexicon of common words + knowledge of keyboard layout)

domain knowledge
ML example: Netflix Prize

- T: given a user/movie pair, predict the user’s rating (1-5 stars) of the movie
- P: minimize difference between predicted and actual rating
- E: histories of previously rated movies (user/movie/rating triples)

Our best guess for Mark:

Our best guess for Mark:
ML example: reinforcement learning to control an autonomous helicopter

video of Stanford University autonomous helicopter from http://heli.stanford.edu/

ML example: autonomous helicopter

- T: given a measurement of the helicopter's current state (orientation sensor, GPS, cameras), select an adjustment of the controls
- P: maximize reward (intended trajectory + penalty function)
- E: state, action and reward triples from previous demonstration flights
Assignment

• for Friday, read
 – Chapter 1 of Mitchell or
 – Chapter 1 of Murphy or
 – Chapter 1 and Section 2.1 of James et al.
 – article by Dietterich on web site

• set up TopHat account
• check out www.biostat.wisc.edu/~craven/cs760/