Ensembles of Classifiers

Mark Craven and David Page
Computer Sciences 760
Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Some of the slides in these lectures have been adapted/borrowed from materials developed
by Tom Dietterich, Pedro Domingos, Tom Mitchell, David Page, and Jude Shavlik

Goals for the lecture

you should understand the following concepts
« ensemble
* bootstrap sample
* Dbagging
* Dboosting
« random forests
« error correcting output codes

What is an ensemble?

h(x)

a set of learned models whose individual decisions are combined in
some way to make predictions for new instances

When can an ensemble be more accurate?

when the errors made by the individual predictors are
(somewhat) uncorrelated, and the predictors’ error rates are
better than guessing (< 0.5 for 2-class problem)

consider an idealized case...

Probability

0.2

0.18 |

0.16 |

0.14

0.12 |

0.1

0.08 |-

0.06 |-

0.04

0.02 |-

.....

¥

5

10 15
Number of classifiers in error

20

Figure 1. The Probability That Exactly ¢ (of 21) Hypotheses Will
Make an Error, Assuming Each Hypothesis Has an Error Rate of 0.3

and Makes Its Errors Independently of the Other Hypotheses.

error rate of ensemble

IS represented by
probability mass in this box
= 0.026

Figure from Dietterich, Al Magazine, 1997

How can we get diverse classifiers?

* |In practice, we can'’t get classifiers whose errors are completely
uncorrelated, but we can encourage diversity in their errors by

choosing a variety of learning algorithms

choosing a variety of settings (e.g. # hidden units in neural
nets) for the learning algorithm

choosing different subsamples of the training set (bagging)

using different probability distributions over the training
instances (boosting)

choosing different features and subsamples (random forests)

Bagging (Bootstrap Aggregation)

[Breiman, Machine Learning 1996]

learning:

given: learner L, training set D = { <(x(@,y@) ... (xm ym) 1

fori < 1to T do
D, < m instances randomly drawn with replacement from D
h; &< model learned using L on D,

classification:
given: test instance x
predict y < plurality_vote(i(x) ... hi(x))

regression:
given: test instance x
predict y < mean(i,(x) ... hp(x))

Bagging

each sampled training set is a bootstrap replicate
» contains m instances (the same as the original training set)
* on average it includes 63.2% of the original training set
* some instances appear multiple times

can be used with any base learner

works best with unstable learning methods: those for which small
changes in D result in relatively large changes in learned models

Empirical evaluation of bagging with C4.5

35

30 o ©

25 |

20 +

15 F °

Error Rate of C4.5

Figure from Dietterich, Al Magazine, 1997

0 5 10 15 20 25 30
Error Rate of Bagged C4.5

Bagging reduced error of C4.5 on most data sets; wasn’t harmful on any

Boosting

Boosting came out of PAC learning analysis

A weak PAC learning algorithm is one that cannot PAC learn for
arbitrary € and 0, although its hypotheses are slightly better than

random guessing

Suppose we have a weak PAC learning algorithm L for a concept
class C. Can we use L as a subroutine to create a strong PAC
learner for C?

* Yes, by boosting! [Schapire, Machine Learning 1990]

» The original boosting algorithm was of theoretical interest, but
assumed an unbounded source of training instances

A later boosting algorithm, AdaBoost, has had notable practical
success

AdaBoost

[Freund & Schapire, Journal of Computer and System Sciences, 1997]

return:

given: learner L, # stages T, training set D = { (x®,y®) .. (x(m ym)
foralli: w,(i) ¢ 1/m // initialize instance weights
fort < 1to T do
foralli: p(i) < w(i)/ (Zj w,()) // normalize weights
h, < model learned using L on D and p,
g, & 2 p()(1 - d(h(x(V), yi)y) // calculate weighted error
if &, > 0.5 then
Tr<itr-—1
break
ﬂt < 8t/ (1 o 8t)
for all i where h(x(") = y® /I down-weight correct examples

wy, (0) < w(i) B,

h(x)= argmax, i(logﬁij 8(h,(x),)

Implementing weighted instances with
AdaBoost

« AdaBoost calls the base learner L with probability distribution p,
specified by weights on the instances

* there are two ways to handle this

1. Adapt L to learn from weighted instances; straightforward for
decision trees and naive Bayes, among others

2. Make a large (>> m) unweighted set of instances by
replicating each instance many times; sample this set
according to p,; run L in the ordinary manner

AdaBoost variants

AdaBoost.M1: 1-of-n multiclass tasks
AdaBoost.M2: arbitrary multiclass tasks
AdaBoost.R: regression

confidence-rated predictions (learners output their confidence in
predicted class for each instance)

etc.

Empirical evaluation of boosting with C4.5

35

1
¢ o

30

25

20

T

15 - o

Error Rate of C4.5

T
.Q.

10

0 5 10 15 20 25 30
Error Rate of AdaBoost with C4.5

Figure from Dietterich, Al Magazine, 1997

Bagging and boosting with C4.5

2
- 25 o b .
O)
<
b — o
20} ° !
o0
£ ,
S
= 15]
5] 6
<5 o -
= ¢ . - o
5 10 - |
= °
=
o !
v
5 £ i
, ",o"' o
&0
0 9'6‘ 1 L 1 1 1
0 5 10 15 20 25 30

Error rate of AdaBoost with C4

Figure from Dietterich, Al Magazine, 1997

Empirical study of bagging vs. boosting

[Opitz & Maclin, JAIR 1999]

o« 23 data sets
e (C4.5 and neural nets as base learners

* bagging almost always better than single
decision tree or neural net

* boosting can be much better than bagging

* however, boosting can sometimes reduce accuracy
(too much emphasis on outliers?)

Random forests

[Breiman, Machine Learning 2001]

given: candidate feature splits F,
training set D = { (), y) ... (xm ym)
fori < 1toTdo
D, < m instances randomly drawn with replacement from D
h; &< randomized decision tree learned with F, D,

randomized decision tree learning:
to select a split at a node
R ¢ randomly select (without replacement) f feature splits from F
(where f<< IFl)
choose the best feature split in R
do not prune trees

classification/regression:
as in bagging

One large-scale empirical study

[Fernandez-Delgado JMLR 2014]

compared 179 classifiers on 121
data sets

random forest was the best family
of classifiers (3 classifiers in the
top 5)

Rank | Acc. K Classifier

32.9 | 82.0 | 635 parRF_t (RF)
33.1 | 82.3 | 63.6 rf t (RF)

36.8 | 81.8 | 622 svm_C (SVM)
38.0 81.2 60.1 svmPoly_t (SVM)
39.4 | 81.9 | 62.5 rforest_ R (RF)
39.6 | 82.0 | 62.0 elm_kernel.m (NNET)
40.3 | 81.4 | 61.1 svmRadialCost_t (SVM)
42.5 | 81.0 | 60.0 svmRadial t (SVM)
42.9 | 80.6 | 61.0 C5.0_t (BST)
44.1 79.4 | 60.5 avNNet_t (NNET)
455 | 795 | 61.0 nnet_t (NNET)
47.0 | 78.7 | 594 pcaNNet_t (NNET)
471 | 80.8 | 53.0 BG_LibSVM._w (BAG)
47.3 | 80.3 | 62.0 mlp_t (NNET)
47.6 | 80.6 | 60.0 RotationForest_.w (RF)
50.1 | 80.9 | 61.6 RRF_t (RF)

51.6 | 80.7 | 61.4 RRFglobal t (RF)
52.5 80.6 58.0 MAB_LibSVM_w (BST)
52.6 79.9 56.9 LibSVM_w (SVM)
57.6 79.1 59.3

adaboost_R (BST)

One application of random forests:

human pose recognition in the Xbox Kinect
[Shotton et al., CVPR 2011]

Classification task
» Given: a depth image
» Do: classify each pixel into one of 31 body parts

SN -

-

o 1,

1 r’

QZ ;;’
%

B -
K

real (test)

synthetic (train & test)

L

Bias/variance and ensembles

bagging & random forests work mainly by reducing variance

boosting works by
* primarily reducing bias in the early stages
 primarily reducing variance in latter stages

there is also a margin-maximization interpretation for why
boosting works

Learning models for multi-class problems

« consideralearningtaskwithk>2classes @ I @ H B
« with some learning methods, we can learn one model to predict

the k classes
.

« an alternative approach is to learn Kk models; each represents
one class vs. the rest

LR &R &R &R &R

* but we could learn models to represent other encodings as well

Error correcting output codes
[Dietterich & Bakiri, JAIR 1995]

« ensemble method devised specifically for problems with many classes
* represent each class by a multi-bit code word
» learn a classifier to represent each bit function

(C'ode Word
Class | o |h | B | Ll fal L |l ol s | fio| ful fiz] fiz] fia
0 1 1 0 0 0 0 | 0 | 0 0 | | 0 |
| 0 0 1 | | | 0 | 0 | 1 0 0 1 0
2 1 0 0 1 0 0 0 | | 1 | 0 1 0 |
3 0 0 1 1 0 1 | | 0 0 0 0 | 0 |
! 1 1 1 0 1 0 | 1 0 0 | 0 0 0 1
5] 0 1 0 0 | | 0 1 | 1 0 0 0 0 |
6 1 0 | | 1 0 0 0 0 1 0 | 0 0 |
7 0 0 0 | | 1 1 0 | 0 1 | 0 0 1
N 1 1 0 1 0 | | 0 0 | 0 0 0 1 |
9 0 1 | 1 0 0 0 0 | 0 | 0 0 1 1

<
SS =<
~. ~,
~, -~
~ ~
~ ~~
~. ~~
~ ~

~
. ~~
~, ~
~ ~~
~ ~
~., ~~
~~

Classification with ECOC

» to classify a test instance x using an ECOC ensemble with T classifiers

1. form a vector h(x) = {h,(x) ... h,{x)) where h,(x) is the prediction of
the model for the it" bit

2. find the codeword ¢ with the smallest Hamming distance to /(x)
3. predict the class associated with ¢

* if the minimum Hamming distance between any pair of codewords is d,

we can still get the right classification with LEJ single-bit errors
2

recall, Lx] is the largest
iInteger not greater than x

Error correcting code design

a good ECOC should satisfy two properties

1.

2.

row separation: each codeword should be well separated in
Hamming distance from every other codeword

column separation: each bit position should be uncorrelated
with the other bit positions

Code Word
Class | foll h | E N | fal e | el s | o | fio | i | fiz | fia | fia
0 1 1 010 0 0 1 0 1 0 0 1 1 0 |
| 0 0]]]] 0] 0 |] 0 0] 0
2 | 0 i | 0 010 | | 1 1 0 1 0 1 .
3 0 i | | 0 1 1 1 0 0 0 () 1 0 l II 7 bits apart
4 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1
D 0 1 0 10 1 1 0 1 1 1 0 0 0 0 |
6 | 0 | 1 1 0] 0 0 0 1 0 1 0 0 1
7 0 0 0 1 1 1 1 0 1 0 1 1 0 0 |
N | | 0 1 0 | 1 0 0 1 0 0 0 | |
9 0 | 1 1 0 0] 0 0 | 0 1 0 0 1 |
6 bits apart —

d =7 so this code can correct [TJ =3 errors

Performance relative to Multiclass

ECOC evaluation with C4.5

[
o

o

—
o

B
S

o
S

- s P I
: : P : : .
1 : e : : : ' I | .
. . ' : : ' ' — (4.5 Multiclass
_ i % i : ; s a

@ C4.5 one-per-class O C4.5 ECOC

Figure from Bakiri & Dietterich, JAIR, 1995

ECOC evaluation with neural nets

N g
_ N : D
& & -\\> & AN
R <° & N2 >

—
S
|

Performance relative to one-per-class
o wh
|

[| Backprop one-per-class

- Backprop ECOC

Figure from Bakiri & Dietterich, JAIR, 1995

(Functional) Gradient Boosting

Consider learning a regression tree to minimize squared error

Boosting adds a new tree (or model of any base learner type) to
fix current errors, by reweighting wrongly-predicted examples;
Breiman realized could just fit next tree to current residuals

Current model: F(x) = w,F,(x) + ... + w F,(x)

Each example (x;y;) now becomes (x;r;), where r; = y;,— F(x;)

Friedman, Bartlett, others saw residual y, - F(x) is just gradient of
squared error loss %4(y-F(x;))? with respect to F(x;); in general,
can fit next model to negative gradient of any loss function if can

efficiently find a model aligned with negative gradient of that loss
26

Gradient Boosting with Squared Error
(from Friedman, 1999)

F()(X) — g
For m =1 to M do:
Ui =Yi — Fp—1(x3), 1=1,N
(pma am) — arg mina,p Zi\il[gz — ph(Xi§ a)]2

Fin(x) = F—1(X) + pmh(X; am)
endFor

27

TreeBoost (Friedman)

Friedman, Hastie, collaborators realized that once you learned
the next tree, instead of fitting one best coefficient (weight) to the
tree, why not re-fit a whole vector of coefficients, one per leaf

This is tree boost, algorithm on next slide (slide from Hastie,
1999)

28

1. Initialize fy(x) = argmin, Zivzl L(yi,).
2. Form =1 to M:
(a) Fori=1,2,...,N compute

Fim = — laLg/;’(;;tSEi))] f=fme1

(b) Fit a regression tree to the targets rip,

giving terminal regions
Rim, j=1,2,...,Jn.

(c) For j=1,2,...,J, compute

Yjim = arg mfyin Z L (yia fm—l(xi) + ’7) '
T, ERjm

(d) Update
fm(x) — fm—l(x) + Zj;nl /ijl(x = ij)'

3. Output f(z) = far(z). 29

Other Ensemble Methods

Use different parameter settings with same algorithm
Use different learning algorithms

Instead of voting or weighted voting, learn the
combining function itself

— Called “Stacking”
— Higher risk of overfitting

— ldeally, train arbitrator function on different subset
of data than used for input models

Naive Bayes is weighted vote of stumps »

Comments on ensembles

They very often provide a boost in accuracy over base learner

It's a good idea to evaluate an ensemble approach for almost
any practical learning problem

They increase runtime over base learner, but compute cycles are
usually much cheaper than training instances

Some ensemble approaches (e.g. bagging, random forests) are
easily parallelized

Prediction contests (e.g. Kaggle, Netflix Prize) usually won by
ensemble solutions

Ensemble models are usually low on the comprehensibility scale,
although see work by

Craven & Shavlik, NIPS 1996]
'Domingos, Intelligent Data Analysis 1998]
'Van Assche & Blockeel, ECML 2007]

