Ensembles of Classifiers

Mark Craven and David Page Computer Sciences 760 Spring 2018

www.biostat.wisc.edu/~craven/cs760/

Goals for the lecture

you should understand the following concepts

- ensemble
- bootstrap sample
- bagging
- boosting
- random forests
- error correcting output codes

What is an ensemble?

a set of learned models whose individual decisions are combined in some way to make predictions for new instances

When can an ensemble be more accurate?

- when the errors made by the individual predictors are (somewhat) uncorrelated, and the predictors' error rates are better than guessing (< 0.5 for 2-class problem)
- consider an idealized case...

error rate of ensemble is represented by probability mass in this box = 0.026

Figure 1. The Probability That Exactly ℓ (of 21) Hypotheses Will Make an Error, Assuming Each Hypothesis Has an Error Rate of 0.3 and Makes Its Errors Independently of the Other Hypotheses.

How can we get diverse classifiers?

- In practice, we can't get classifiers whose errors are completely uncorrelated, but we can encourage diversity in their errors by
 - choosing a variety of learning algorithms
 - choosing a variety of settings (e.g. # hidden units in neural nets) for the learning algorithm
 - choosing different subsamples of the training set (bagging)
 - using different probability distributions over the training instances (boosting)
 - choosing different features and subsamples (random forests)

Bagging (Bootstrap Aggregation)

[Breiman, Machine Learning 1996]

learning:

```
given: learner L, training set D = \{ \langle x^{(1)}, y^{(1)} \rangle \dots \langle x^{(m)}, y^{(m)} \rangle \} for i \leftarrow 1 to T do D_{\mathbf{i}} \leftarrow m \text{ instances randomly drawn } \underline{\text{with replacement from } D} h_i \leftarrow \text{ model learned using } L \text{ on } D_{\mathbf{i}}
```

classification:

```
given: test instance x predict y \leftarrow \text{plurality\_vote}(h_1(x) \dots h_T(x))
```

regression:

```
given: test instance x predict y \leftarrow \text{mean}(h_1(x) \dots h_T(x))
```

Bagging

- each sampled training set is a bootstrap replicate
 - contains m instances (the same as the original training set)
 - on average it includes 63.2% of the original training set
 - some instances appear multiple times
- can be used with any base learner
- works best with unstable learning methods: those for which small changes in D result in relatively large changes in learned models

Empirical evaluation of bagging with C4.5

Bagging reduced error of C4.5 on most data sets; wasn't harmful on any

Boosting

- Boosting came out of PAC learning analysis
- A weak PAC learning algorithm is one that cannot PAC learn for arbitrary ε and δ , although its hypotheses are slightly better than random guessing
- Suppose we have a weak PAC learning algorithm L for a concept class C. Can we use L as a subroutine to create a strong PAC learner for C?
 - Yes, by boosting! [Schapire, Machine Learning 1990]
 - The original boosting algorithm was of theoretical interest, but assumed an unbounded source of training instances
- A later boosting algorithm, AdaBoost, has had notable practical success

AdaBoost

[Freund & Schapire, Journal of Computer and System Sciences, 1997]

```
given: learner L, # stages T, training set D = \{ \langle \mathbf{x}^{(1)}, \mathbf{y}^{(1)} \rangle \dots \langle \mathbf{x}^{(m)}, \mathbf{y}^{(m)} \rangle \}
for all i: w_1(i) \leftarrow 1/m
                                                                                        // initialize instance weights
for t \leftarrow 1 to T do
               for all i: p_t(i) \leftarrow w_t(i) / (\sum_i w_t(j))
                                                                                                     // normalize weights
               h_t \leftarrow \text{model learned using } L \text{ on } D \text{ and } p_t
               \varepsilon_t \leftarrow \sum_i p_t(i) (1 - \delta(h_t(\mathbf{x}^{(i)}), \mathbf{y}^{(i)}))
                                                                                          // calculate weighted error
               if \varepsilon_t > 0.5 then
                              T \leftarrow t - 1
                              break
              \beta_t \leftarrow \varepsilon_t / (1 - \varepsilon_t)
               for all i where h_t(\mathbf{x}^{(i)}) = \mathbf{y}^{(i)}
                                                                               // down-weight correct examples
                              w_{t+1}(i) \leftarrow w_t(i) \beta_t
```

return:

$$h(\mathbf{x}) = \arg\max_{\mathbf{y}} \sum_{t=1}^{T} \left(\log \frac{1}{\beta_t} \right) \delta(h_t(\mathbf{x}), \mathbf{y})$$

Implementing weighted instances with AdaBoost

- AdaBoost calls the base learner L with probability distribution p_t specified by weights on the instances
- there are two ways to handle this
 - 1. Adapt L to learn from weighted instances; straightforward for decision trees and naïve Bayes, among others
 - 2. Make a large (>> m) unweighted set of instances by replicating each instance many times; sample this set according to p_t ; run L in the ordinary manner

AdaBoost variants

- AdaBoost.M1: 1-of-n multiclass tasks
- AdaBoost.M2: arbitrary multiclass tasks
- AdaBoost.R: regression
- confidence-rated predictions (learners output their confidence in predicted class for each instance)
- etc.

Empirical evaluation of boosting with C4.5

Figure from Dietterich, Al Magazine, 1997

Bagging and boosting with C4.5

Figure from Dietterich, AI Magazine, 1997

Empirical study of bagging vs. boosting

[Opitz & Maclin, JAIR 1999]

- 23 data sets
- C4.5 and neural nets as base learners
- bagging almost always better than single decision tree or neural net
- boosting can be much better than bagging
- however, boosting can sometimes reduce accuracy (too much emphasis on outliers?)

Random forests

[Breiman, Machine Learning 2001]

```
given: candidate feature splits F, training set D = \{ \langle \mathbf{x}^{(1)}, \mathbf{y}^{(1)} \rangle \dots \langle \mathbf{x}^{(m)}, \mathbf{y}^{(m)} \rangle \} for i \leftarrow 1 to T do D_i \leftarrow m \text{ instances randomly drawn } \underline{\text{with replacement from } D} h_i \leftarrow \underline{\text{randomized decision tree learned with } F, D_i
```

randomized decision tree learning:

to select a split at a node

 $R \leftarrow \text{randomly select (without replacement)} f \text{ feature splits from } F$ (where f << |F|)

choose the best feature split in R

do not prune trees

classification/regression:

as in bagging

One large-scale empirical study

[Fernández-Delgado JMLR 2014]

- compared 179 classifiers on 121 data sets
- random forest was the best family of classifiers (3 classifiers in the top 5)

Rank	Acc.	κ	Classifier
32.9	82.0	63.5	parRF_t (RF)
33.1	82.3	63.6	rf_t (RF)
36.8	81.8	62.2	$svm_C (SVM)$
38.0	81.2	60.1	svmPoly_t (SVM)
39.4	81.9	62.5	rforest_R (RF)
39.6	82.0	62.0	elm_kernel_m (NNET)
40.3	81.4	61.1	$svmRadialCost_t (SVM)$
42.5	81.0	60.0	svmRadial_t (SVM)
42.9	80.6	61.0	$C5.0_{-}t$ (BST)
44.1	79.4	60.5	$avNNet_{-t}$ (NNET)
45.5	79.5	61.0	${ m nnet}_{ m -t}$ (NNET)
47.0	78.7	59.4	$pcaNNet_{-}t$ (NNET)
47.1	80.8	53.0	BG_LibSVM_w (BAG)
47.3	80.3	62.0	$\mathrm{mlp_t}$ (NNET)
47.6	80.6	60.0	RotationForest_w (RF)
50.1	80.9	61.6	$\mathrm{RRF}_{-}\mathrm{t}\;(\mathrm{RF})$
51.6	80.7	61.4	RRFglobal_t (RF)
52.5	80.6	58.0	MAB_LibSVM_w (BST)
52.6	79.9	56.9	${ m LibSVM_{-}w}~({ m SVM})$
57.6	79.1	59.3	$adaboost_R (BST)$

One application of random forests: human pose recognition in the Xbox Kinect

[Shotton et al., CVPR 2011]

Classification task

- Given: a depth image
- Do: classify each pixel into one of 31 body parts

Bias/variance and ensembles

- bagging & random forests work mainly by reducing variance
- boosting works by
 - primarily reducing bias in the early stages
 - primarily reducing variance in latter stages
- there is also a margin-maximization interpretation for why boosting works

Learning models for multi-class problems

- consider a learning task with k > 2 classes \blacksquare
- with some learning methods, we can learn one model to predict the k classes

 an alternative approach is to learn k models; each represents one class vs. the rest

but we could learn models to represent other encodings as well

Error correcting output codes

[Dietterich & Bakiri, JAIR 1995]

- ensemble method devised specifically for problems with many classes
 - represent each class by a multi-bit code word
 - learn a classifier to represent each bit function

	Code Word														
Class	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}
0	1	1	0	0	0	0	1	0	1	0	0	1	1	0	1
1	0	0	1	1	1	1	0	1	0	1	1	0	0	1	0
2	1	0	0	1	0	0	0	1	1	1	1	0	1	0	1
3	0	0	1	1	0	1	1	1	0	0	0	0	1	0	1
4	1	1	1	0	1	0	1	1	0	0	1	0	0	0	1
5	0	1	0	0	1	1	0	1	1	1	0	0	0	0	1
6	1	0	1	1	1	0	0	0	0	1	0	1	0	0	1
7	0	0	0	1	1	1	1	0	1	0	1	1	0	0	1
8	1	1	0	1	0	1	1	0	0	1	0	0	0	1	1
9	0	1	1	1	0	0	0	0	1	0	1	0	0	1	1

Classification with ECOC

- to classify a test instance x using an ECOC ensemble with T classifiers
 - 1. form a vector $h(x) = \langle h_I(x) \dots h_T(x) \rangle$ where $h_i(x)$ is the prediction of the model for the i^{th} bit
 - 2. find the codeword c with the smallest Hamming distance to h(x)
 - 3. predict the class associated with *c*

• if the minimum Hamming distance between any pair of codewords is d, we can still get the right classification with $\left|\frac{d-1}{2}\right|$ single-bit errors

recall, $\lfloor x \rfloor$ is the largest integer not greater than x

Error correcting code design

a good ECOC should satisfy two properties

- 1. row separation: each codeword should be well separated in Hamming distance from every other codeword
- 2. column separation: each bit position should be uncorrelated with the other bit positions

Γ		Code Word														
	Class	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}
Γ	0	1	1	0	0	0	0	1	0	1	0	0	1	1	0	1
	1	0	0	1	1	1	1	0	1	0	1	1	0	0	1	0
	2	1	0	0	1	0	0	0	1	1	1	1	0	1	0	1
	3	0	0	1	1	0	1	1	1	0	0	0	0	1	0	1
ľ	4	1	1	1	0	1	0	1	1	0	0	1	0	0	0	1
	5	0	1	0	0	1	1	0	1	1	1	0	0	0	0	1
	6	1	0	1	1	1	0	0	0	0	1	0	1	0	0	1
	7	0	0	0	1	1	1	1	0	1	0	1	1	0	0	1
	8	1	1	0	1	0	1	1	0	0	1	0	0	0	1	1
	9	0	1	1	1	0	0	0	0	1	0	1	0	0	1	1

7 bits apart

$$d = 7$$
 so this code can correct $\left| \frac{7-1}{2} \right| = 3$ errors

ECOC evaluation with C4.5

ECOC evaluation with neural nets

(Functional) Gradient Boosting

- Consider learning a regression tree to minimize squared error
- Boosting adds a new tree (or model of any base learner type) to fix current errors, by reweighting wrongly-predicted examples;
 Breiman realized could just fit next tree to current residuals
 - Current model: $F(\mathbf{x}) = w_1 F_1(\mathbf{x}) + \dots + w_n F_n(\mathbf{x})$
 - Each example (\mathbf{x}_i, y_i) now becomes (\mathbf{x}_i, r_i) , where $r_i = y_i F(\mathbf{x}_i)$
- Friedman, Bartlett, others saw residual $y_i F(x_i)$ is just gradient of squared error loss $\frac{1}{2}(y_i F(x_i))^2$ with respect to $F(x_i)$; in general, can fit next model to negative gradient of any loss function if can efficiently find a model aligned with negative gradient of that loss

Gradient Boosting with Squared Error (from Friedman, 1999)

$$F_{0}(\mathbf{x}) = \bar{y}$$
For $m = 1$ to M do:
$$\tilde{y}_{i} = y_{i} - F_{m-1}(\mathbf{x}_{i}), \quad i = 1, N$$

$$(\rho_{m}, \mathbf{a}_{m}) = \arg\min_{\mathbf{a}, \rho} \sum_{i=1}^{N} [\tilde{y}_{i} - \rho h(\mathbf{x}_{i}; \mathbf{a})]^{2}$$

$$F_{m}(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \rho_{m} h(\mathbf{x}; \mathbf{a}_{m})$$
endFor

TreeBoost (Friedman)

 Friedman, Hastie, collaborators realized that once you learned the next tree, instead of fitting one best coefficient (weight) to the tree, why not re-fit a whole vector of coefficients, one per leaf

 This is tree boost, algorithm on next slide (slide from Hastie, 1999)

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{im}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm}).$
- 3. Output $\hat{f}(x) = f_M(x)$.

Other Ensemble Methods

- Use different parameter settings with same algorithm
- Use different learning algorithms
- Instead of voting or weighted voting, learn the combining function itself
 - Called "Stacking"
 - Higher risk of overfitting
 - Ideally, train arbitrator function on different subset of data than used for input models
- Naïve Bayes is weighted vote of stumps

Comments on ensembles

- They very often provide a boost in accuracy over base learner
- It's a good idea to evaluate an ensemble approach for almost any practical learning problem
- They increase runtime over base learner, but compute cycles are usually much cheaper than training instances
- Some ensemble approaches (e.g. bagging, random forests) are easily parallelized
- Prediction contests (e.g. Kaggle, Netflix Prize) usually won by ensemble solutions
- Ensemble models are usually low on the comprehensibility scale, although see work by

[Craven & Shavlik, NIPS 1996]

[Domingos, Intelligent Data Analysis 1998]

[Van Assche & Blockeel, ECML 2007]